LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

CHAIR OF THEORETICAL COMPUTER SCIENCE AND THEOREM PROVING

Benchmarking and Analysis of Automated Theorem
Provers

Shivam Sambyal

Bachelor’s Thesis
Computer Science plus Mathematics

Supervisor: Prof. Jasmin Blanchette
Advisor: Lydia Kondylidou

Submission Date: July 11, 2025

Disclaimer

I confirm that this thesis type is my own work and I have documented all sources and material used.

Munich, July 11, 2025 Shivam Sambyal

Acknowledgments

I wish to extend my sincere gratitude to my advisor, Lydia Kondylidou, for her unwavering
guidance, insightful feedback, and encouragement throughout the course of this thesis.
Additionally, I am profoundly grateful to my supervisor, Professor Jasmin Blanchette, for affording
me the opportunity to engage with this challenging and intellectually stimulating subject in the field
of automated proving and reasoning.

Abstract

This thesis provides a comparative analysis of the automated reasoning capabilities of two state-of-
the-art theorem provers: the SMT solver cvc5 and the saturation-based prover Vampire. The primary
focus is on assessing their performance on selected higher-order problems sourced from the TPTP
library. Particular emphasis is placed on instances in which cvc5 fails to produce a result, whereas
Vampire succeeds by employing classical inference techniques such as skolemization, resolution,
and superposition. The study comprises benchmark-driven experiments alongside theoretical proof
reconstructions aimed at identifying fundamental differences in reasoning strategies. The findings
offer valuable insights into the limitations of cvcS within symbolic domains and suggest potential
avenues for architectural enhancements.

Keywords: Automated Theorem Proving, SMT Solvers, cvcS, Vampire, TPTP, Benchmark-
ing, First-Order Logic, Higher-Order Logic, Symbolic Reasoning, Skolemization, Resolution,
Superposition, Conjunctive Normal Form (CNF), Proof Reconstruction, Saturation-Based Provers

Contents

1.2 IVIEW| . v v v v v e e e e e e e

2 Background|
[2.1 Automated Reasoning and Theorem Proving|

22 _SMTSolvers

2.3 Comparison SMT Solvers and in general ATPs|

2.4 Benchmarking in Automated Theorem Proving|

Main Contribution

[3.1 Project Structure and Setup|
[3.2 Comparative Analysis of cved and Vampire|
3.3 Proof Transformation Process|
(3.4 Benchmark Problem Examples|
3.4.1 Exampleld|
3.4.2 Example?2|
3.4.3 Example 3|
[3.4.4 Exampled4]
4 Experiments|
4.1 The TPTP Problem Library|
4.2 Experimental Setup{
4.3 Scripting and Test Execution|
4.4 Benchmark Filtering and Comparison| . . .
“.5 Data Collection and Validation|
4.6 Benchmark Results|
4.6.1 Key Findings and Problem Grouping|
4.6.2 Broader Implications|
Identification of Problem Patterns|
[5.1 Overview of Comparative Results|
5.2 Patterns in cved Failuresl
[5.2.1 Skolemization Incompatibility| . . .
D.2.2 Absence of Resolution Calculus| . .
[5.2.3 Inability to Perform Unification| . .

[5.2.4 Lack of Binary Proxy Clausification|
[5.2.5 Absence of Superposition Calculus|

6 Conclusion|

22
23
23
24
24
25
25
25
26
26

27
27
27
27
28
28
29
29

29

1 Introduction

1.1 Motivation

Automated Theorem Proving (ATP) occupies a vital position in contemporary formal verifica-
tion, logic, and artificial intelligence. These systems are engineered to establish the validity or
invalidity of logical formulas autonomously, utilizing a combination of deductive methodologies
such as resolution, superposition, and satisfiability modulo theories (SMT) (7). Over the past
several decades, ATPs have undergone significant advancements, enabling essential applications in
software verification, the discovery of mathematical theorems, and knowledge reasoning systems.
Nonetheless, despite these progressions, certain limitations persist, particularly in the context of
quantifier reasoning and the management of intricate structural complexities (J).

One of the principal motivations for this thesis arises from a recurring challenge encountered
during practical engagements with higher-order problems derived from the TPTP (Thousands of
Problems for Theorem Provers) library (10). Although the solver cvc5 is a potent and highly
modular SMT solver (1)), it consistently failed to resolve a significant subset of these problems.
Such failures were characterized by extended timeouts or non-terminating behaviors, which resulted
in an outcome marked as “unknown.”

This inquiry prompted a critical examination: what specific limitations of cvcS contribute
to its failure on certain problems that other provers, such as Vampire, are capable of successfully
resolving? The thesis originated from this question, with the objective of benchmarking both
systems against each other through the use of carefully selected higher-order logic problems. Unlike
cveS, Vampire is a saturation-based automated theorem prover (ATP) that specializes in clause-level
manipulation and resolution calculus (12). It has demonstrated consistent top-tier performance in
international ATP competitions such as the CASC (CADE ATP System Competition), particularly
in the categories of first-order and higher oder logics (10).

Consequently, the focus of this thesis is to analyze the performance disparity between cvc5 and
Vampire, particularly on problems involving deeply nested quantifiers, Skolemization, superposition,
unification or clausification. While both provers are formally sound, they employ markedly different
proof strategies: cvcS utilizes a hybrid SMT architecture that is most effective for quantifier-free or
theory-rich problems, whereas Vampire is designed to optimize saturation strategies across extensive
clause sets.

To investigate these differences, we conducted an extensive benchmarking and theoretical
analysis involving hundreds of problems sourced from twenty-three folders within the TPTP library.
Each problem was initially evaluated using cvcS. If the result was a "timeout’ or "'unknown,’ the
same problem was subsequently re-evaluated with Vampire. This filtering process resulted in a
curated subset of problems solvable by Vampire but not by cvc$5, thereby providing valuable insights
into the architectural and logical distinctions between the two systems.

This work not only furnishes a diagnostic benchmark dataset for future research endeavors but
also establishes a foundation for enhancing existing solvers or developing hybrid architectures. It
is our aspiration that this thesis serves as both a reference and a strategic roadmap for researchers
seeking to narrow the performance gap in advanced higher-order automated reasoning systems.

1.2 Overview

This thesis is organized to guide the reader from the fundamental principles of automated rea-
soning to a comprehensive comparative analysis of two prominent theorem provers—cvc5 and
Vampire—focusing specifically on their performance with higher-order logic problems sourced
from the TPTP library.

Following the presentation of the motivation, scope, and objectives in the introduction, the
second chapter establishes the necessary theoretical foundation. It introduces essential concepts
in logic, the historical development of automated theorem proving, and the core mechanisms
employed by both SMT solvers and general automated theorem provers. Additionally, this chapter
provides information about the problem library utilized throughout the thesis and an introduction to
benchmarking in automated theorem proving.

The third chapter details the main theoretical contributions of the thesis. It begins with a broad
conceptual overview of how formal proofs are transformed within automated reasoning systems,
including techniques such as negation, conversion to negation normal form (NNF), Skolemization,
transformation into conjunctive normal form (CNF), and resolution via unification. This is fol-
lowed by a comparative theoretical analysis of cveS and Vampire, emphasizing their respective
proof strategies, capabilities, and limitations. The discussion establishes a logical foundation for
interpreting the behaviors of the solvers observed in the subsequent experimental sections.

Empirical benchmarking is addressed in the fourth chapter, which describes the testing method-
ology employed to evaluate both solvers across a curated subset of TPTP problems. It details the
experimental design, classification criteria, timeout management, and result collection procedures.
The chapter concludes with a presentation of the benchmarking outcomes, illustrating clear patterns
in the instances where cvc5 encounters difficulties and Vampire successfully resolves the problems.

Chapter five provides a detailed analysis of these results. It examines recurring failure pat-
terns observed in cvcS, contrasting them with Vampire’s saturation-based reasoning and symbolic
rewriting capabilities, which frequently enable it to resolve many of the same problems successfully.
The analysis also identifies particular problem patterns, offering an in-depth examination of how
Vampire constructs proofs in scenarios where cvc5 is unable to proceed.

The final chapter concludes the thesis by summarizing the principal insights derived from
both the theoretical and experimental investigations. It reflects on the architectural and strategic
disparities between SMT and ATP paradigms and suggests potential avenues for enhancement and
future research aimed at mitigating the limitations observed in cvcS.

2 Background

Automated reasoning constitutes a fundamental discipline within theoretical computer science and
artificial intelligence, dedicated to the mechanization of logical inference processes. Its primary aim
is to develop algorithmic systems capable of autonomously establishing the validity or invalidity of
logical statements through formal deduction techniques. The significance of automated reasoning
has increased in response to the growing complexity and scope of contemporary mathematical
frameworks, hardware and software systems, and knowledge-based applications. In many of these
fields, ensuring correctness is not merely advantageous but essential, particularly within safety-
critical domains such as aerospace, cryptography, and medical systems (/). Manual verification in

these contexts has become infeasible, thereby driving the advancement and widespread adoption of
automated reasoning tools (9)).

Among these computational tools, two principal categories have emerged as particularly influ-
ential: Automated Theorem Provers (ATPs) and Satisfiability Modulo Theories (SMT) solvers. Both
address issues related to logical validity and satisfiability; however, they employ distinctly different
strategies, architectures, and underlying assumptions regarding their applications. Automated
Theorem Provers predominantly rely on symbolic inference methods and are especially effective
for problems characterized by substantial logical complexity and intricate structural reasoning (12).
Conversely, SMT solvers integrate propositional logic with specialized theory solvers designed for
particular domains, such as arithmetic, arrays, or data types (2), thereby rendering them particularly
suitable for problems involving concrete constraints and quantifier-free logic.

2.1 Automated Reasoning and Theorem Proving

Automated reasoning fundamentally pertains to the development of systems capable of deriving
conclusions from a specified set of premises. Within this expansive domain, Automated Theorem
Proving (ATP) specifically denotes the class of algorithms and systems engineered to validate or
disprove mathematical theorems and logical assertions through formal methodologies. ATP systems
function by employing well-defined inference rules applied to axioms and hypotheses to infer new
truths.

A vital distinction within ATP concerns the type of logic utilized. Propositional logic, while
decidable and relatively efficient to resolve, possesses limited expressive capacity. First-order logic
(FOL) introduces quantifiers and predicates, rendering it semi-decidable—solutions can be obtained
if a proof exists, although the process may not terminate otherwise. Higher-order logic (HOL)
further enhances expressiveness by permitting quantification over predicates and functions, yet this
often entails undecidability. These differences significantly influence the capabilities and design
considerations of ATP systems (9).

Notable ATP tools such as Vampire, E, and Prover9 employ saturation-based techniques—including
resolution, paramodulation, and unification—to derive contradictions and thereby establish the
validity of theorems [14]. Their primary advantage lies in addressing logic-intensive, theory-light
problems characterized by complex symbolic structures. These systems have become indispensable
in fields such as formal mathematics, software verification, and symbolic artificial intelligence. As
discussed by Voronkov (12), Vampire’s clause saturation and selection strategies are optimized for
scalability across thousands of clauses, facilitating automated reasoning even in contexts that mimic
higher-order constructs when suitably encoded.

Furthermore, ATP systems often integrate with proof assistants such as Coq, Isabelle, and
Lean (5), enabling users to combine automated proof search with human-guided verification. This
synergy provides a balanced approach, merging automation with transparency and control over the
proof process.

2.2 SMT Solvers

Satisfiability Modulo Theories (SMT) solvers, including cvc5, Z3, and Yices, extend traditional
SAT solvers by integrating specialized decision procedures for a broad spectrum of background
theories, such as arithmetic, bit-vectors, arrays, datatypes, and uninterpreted functions. Most SMT

solvers are constructed upon the DPLL(T) architecture, which synergistically combines Boolean
satisfiability solving (SAT) with modular theory solvers in a highly optimized and cooperative
fashion (2)).

In particular, cvc5 stands as one of the most advanced and modular SMT solvers available.
Developed as the successor to cvc4, it introduces sophisticated capabilities and enhanced support for
quantified reasoning, as evidenced in the work by Barbosa et al. (1). cvc5 encompasses a wide range
of theories and employs efficient quantifier-handling techniques, including E-matching, Model-
Based Quantifier Instantiation, and Counterexample-Guided Quantifier Instantiation (CEGQI).
These strategies enable cvc5 to reason about quantified formulas without necessitating full clause-
level saturation, a trait more characteristic of Automated Theorem Provers (ATPs).

Notwithstanding their robust capabilities, SMT solvers are predominantly tailored towards
theory-specific reasoning, rendering them less suitable for purely symbolic logic problems that
require exhaustive Skolemization, unification, or resolution-based inference (1). Their architecture
is optimized for performance within particular theory domains, notably fragments such as EUF
(Equality with Uninterpreted Functions), bit-vector logic, and linear integer arithmetic.

The significance of SMT solvers in the domains of software and hardware verification is
substantial. They serve as fundamental components in bounded model checkers, software verifiers,
and synthesis tools, providing powerful theory solvers for assessing the satisfiability of path
conditions, invariants, or symbolic executions (2)). In these applications, SMT solvers are valued
primarily for their deep reasoning within theories rather than for general logical deduction, thereby
illustrating their complementary relationship with ATPs.

2.3 Comparison SMT Solvers and in general ATPs

Although both Satisfiability Modulo Theories (SMT) solvers and classical Automated Theorem
Provers (ATPs) endeavor to establish the validity or satisfiability of logical formulas, they exhibit
substantial differences in methodology, strengths, and domains of application.

SMT solvers, such as cvcS, Z3 and Yices, constitute extensions of propositional satisfiability
(SAT) solvers incorporating decision procedures for specific logical theories, including arithmetic,
bit vectors, arrays, uninterpreted functions, and data types (3). The predominant architecture
employed by SMT solvers is the DPLL(T) framework, which integrates theory propagation with
Boolean SAT solving. This configuration enables SMT solvers to effectively address problems
originating from fields such as program verification, hardware design, and constraint satisfac-
tion, particularly when the logical formulas are predominantly quantifier-free and involve heavy
theoretical content (1)).

Conversely, traditional ATPs such as Vampire, E, and Prover9 are grounded in first-order
logic reasoning and prioritize completeness and clause-level inference techniques over explicit
treatment of theories (12). These provers typically transform input formulas into conjunctive normal
form (CNF), employing saturation-based inference methods—such as superposition, resolution,
or paramodulation—to derive contradictions (refutations) necessary to establish theorems (7).
Automated theorem provers demonstrate particular efficacy in problems characterized by complex
chains of implications, unification processes, or quantifier manipulation, which are prevalent in pure
mathematics and logic puzzles. For example, consider a problem from the TPTP library involving
nested existential and universal quantifiers over functions. Vampire can systematically saturate
the clauses and apply unification rules recursively to derive a contradiction, thereby resolving the

problem. An SMT solver like cvcS, however, may time out or return an “unknown” status due to its
lack of aggressive saturation mechanisms and general-purpose quantifier instantiation strategies
inherent in theory-specific decision procedures (1).

The differences between SMT solvers and ATPs become even more pronounced in the context
of higher-order logic. Most SMT solvers are not designed to handle full higher-order reasoning; they
primarily rely on heuristics for quantifier instantiation and lack the capacity for deep clause-level
reasoning necessary to handle higher-order entities effectively (1)). In contrast, although not all ATPs
are inherently equipped for higher-order reasoning, some—such as extensions of Vampire—can
address such problems through reduction to first-order logic or via specialized techniques and
extensions ().

Practically, these two classes of solvers are complementary. SMT solvers often outperform
ATPs in code verification tasks due to their theory-aware optimizations. Conversely, ATPs are
indispensable in domains involving mathematics, logic, and complex reasoning tasks that require
comprehensive logical inference capabilities (4). The objective of this thesis is to examine the
limitations of each approach—specifically, to identify scenarios where cvcS-type SMT solvers are
insufficient, and Vampire-type ATPs demonstrate superiority in handling higher-order reasoning.

2.4 Benchmarking in Automated Theorem Proving

Benchmarking occupies a vital position in shaping the trajectory of automated theorem proving
(ATP) systems. It provides researchers with a rigorous, empirical framework for measuring,
comparing, and enhancing the performance of various provers. Competitions such as the CADE
ATP System Competition (CASC), which utilize the TPTP problem set, have been instrumental in
establishing standardized testing protocols and fostering equitable, meaningful comparisons within
the field (10).

More recently, benchmarking practices have expanded to encompass emerging methodologies,
including the application of machine learning techniques to guide proof searches. Approaches such
as reinforcement learning and statistical models have begun to enable provers to navigate complex
problems with greater sophistication (8). These developments demonstrate that benchmarking is
not solely a metric of system performance but also a catalyst for innovation, drawing attention to
the most challenging, unresolved problems.

This thesis is centered on an in-depth benchmarking analysis of automated theorem provers
(ATPs), with particular emphasis on cveS and Vampire. The study critically relies on the Thousands
of Problems for Theorem Provers (TPTP) library as the foundational dataset. The TPTP repository
is a reputable resource, offering an extensive collection of test problems spanning various domains
and levels of logical complexity. Its well-structured format and widespread adoption render it an
ideal benchmark for evaluating and comparing the capabilities of different theorem proving systems
(L1)).

The selection of cveS and Vampire was deliberate. CVCS is a contemporary SMT (Satisfiability
Modulo Theories) solver designed to address complex theories such as bit-vectors, arrays, and
arithmetic with robustness (1). Conversely, Vampire is a well-established logic solver renowned for
its consistent and reliable performance across numerous competitive evaluations. By conducting a
comparative analysis of these two systems, the intent is to investigate their respective strengths and
limitations, as well as to identify potential areas of overlap and synergy in their problem-solving
capabilities.

3 Main Contribution

This chapter delineates the principal contributions of the present thesis, situated at the nexus of
empirical benchmarking and formal proof-theoretical analysis. The primary objective was to assess
the performance of two automated theorem provers—cvcS and Vampire—on a subset of higher-
order logic problems derived from the TPTP library and check the limitations of cvc5 in comparison
to Vampire. The work endeavors to furnish not only a comparative account of the solvers’ behavior
but also comprehensive reconstructions and elucidations of the reasoning processes involved. The
contribution is multifaceted, encompassing both implementation-level scripting and theoretical
investigations in logic, which are elaborated upon in the subsequent sections.

3.1 Project Structure and Setup

The project was conducted within a dual-track framework, comprising both empirical and theoretical
components. Empirically, a benchmarking pipeline was established to execute two theorem provers,
cveS and Vampire, on hundreds of.p problem files sourced from the TPTP library. The environment
employed was a Linux-based system, with both provers compiled from source code. Automated
scripts written and executed on problem files, enforced timeouts, and enabled classification of
results. Each solver was allocated identical resource limits to ensure a fair comparative assessment,
and all outcomes were systematically recorded in structured spreadsheets for subsequent analysis.

On the theoretical front, select benchmark problems were scrutinized through manual recon-
struction of the proof processes utilized by Vampire. This process entailed a detailed examination
of the original formula contained within each problem file, followed by the application of logical
transformations—namely negation, conversion to Negation Normal Form (NNF), Skolemization,
translation into Conjunctive Normal Form (CNF), and clause-level resolution. The aim was to
identify the precise logical inferences that facilitated Vampire’s derivation of a contradiction or the
establishment of a proof. These reconstructions not only served to verify Vampire’s success but also
provided insights into potential improvement areas within cvc5’s reasoning strategies.

3.2 Comparative Analysis of cveS and Vampire

This thesis compares two widely used and highly regarded automated reasoning systems—cvcS and
Vampire—with a focus on how their differing architectures and inference mechanisms influence
their behavior on logic-heavy benchmark problems from the TPTP library. While both provers are
advanced and continually evolving, they adopt fundamentally different reasoning philosophies that
make them suited to different types of problem domains.

cveS belongs to the class of SMT (Satisfiability Modulo Theories) solvers, and is designed to
integrate SAT solving with modular decision procedures for background theories such as arithmetic,
arrays, and bit-vectors. Its architecture allows it to combine propositional reasoning with efficient
theory propagation and conflict resolution (1). This makes cvc5 exceptionally powerful in solving
problems that involve constraints over interpreted domains and theory-driven logic, particularly in
software verification and formal methods applications (2).

Vampire, on the other hand, is a saturation-based automated theorem prover operating primarily
in first-order logic (12). Its proof search strategy relies on the exhaustive application of inference
rules to a clause set, including resolution, skolemization, unification and superposition (12). These

methods allow Vampire to navigate complex symbolic relationships and deduce conclusions through
saturation and refutation, particularly in domains that involve rich logical structure.

One notable difference lies in the treatment of quantifiers and symbolic formulas. Vampire
converts input formulas into clause normal form (CNF) through steps such as Skolemization and
negation normal form (NNF) conversion (9). It then applies symbolic inference rules that allow
for general-purpose logical reasoning. Superposition, in particular, plays a key role in Vampire’s
success in handling equalities by enabling the replacement of terms in clauses with their equals—a
process not typically applied in SMT solving.

In contrast, cveS applies heuristic quantifier handling techniques, including E-matching and
Counterexample-Guided Quantifier Instantiation (CEGQI) (1). These methods work especially
well when theory reasoning can guide the search space, but they do not rely on Skolemization,
superposition or unification. Its architecture favors model construction over refutation, which
can sometimes make symbolic exploration of complex quantified formulas less direct than in
saturation-based approaches.

Despite these distinctions, it is important to emphasize that both systems are highly capable,
and their observed differences in performance across the TPTP benchmarks primarily reflect
their intended design goals. Vampire is optimized for logical deduction over purely symbolic
formulas, whereas cvcS5 is engineered to efficiently handle decidable fragments of logic enriched by
background theories. In practice, these paradigms are not mutually exclusive but complementary
(9).

The empirical results of this thesis suggest that certain symbolic reasoning features, such
as clause-level resolution, controlled Skolemization, unification or selective superposition, may
be useful additions to future SMT solver frameworks like cvc5—not as replacements for its
strengths, but as potential extensions that could increase its generality and performance on complex
logical problems. At the same time, the insights from SMT frameworks—especially regarding
efficient theory integration and conflict-driven clause learning—may inform future developments in
saturation-based provers.

This analysis supports a broader view of automated theorem proving as an evolving and
collaborative field. Rather than promoting one paradigm over the other, this thesis highlights the
value of cross-pollination—where techniques traditionally associated with ATPs might enhance
SMT solvers, and vice versa. The comparison between cvc5 and Vampire thus serves not to
rank these tools, but to explore how their complementary strategies can collectively advance the
capabilities of automated reasoning systems.

3.3 Proof Transformation Process

Prior to examining specific examples, it is essential to comprehend the structure of the proof
transformation process employed to reconstruct how Vampire addressed certain problems. The
process adheres to a classical first-order reasoning approach, adapted to correspond with Vampire’s
internal logical pipeline.

Beginning with the original formula extracted from the TPTP problem file, the formula is first
negated, thereby converting the conjecture into a statement whose refutation would substantiate
the original assertion. The negated formula is subsequently transformed into Negation Normal
Form (NNF), ensuring that all negations are directly applied to atomic formulas. The next stage
involves Skolemization, which eliminates existential quantifiers through the introduction of Skolem

functions, thereby simplifying the quantifier structure of the formula. Following Skolemization, the
formula is converted into Conjunctive Normal Form (CNF), yielding a set of disjunctive clauses
amenable to individual manipulation.

Ultimately, this set of clauses is submitted to the resolution process. Unification is employed
to match terms across clauses, and the resolution rule is applied to derive new clauses. In many
instances, techniques such as superposition and paramodulation are also integral, particularly when
equality reasoning is central. This reconstruction not only enhances our understanding of certain
concepts present in Vampire but absent in cvc5, but also facilitates the combination of related
problem files that Vampire can solve in a similar manner—tasks that cvcS was unable to accomplish.
Consequently, this approach may contribute to more targeted improvements in cvcS.

3.4 Benchmark Problem Examples

To complement the theoretical comparison and architectural discussion, this section provides
specific examples of TPTP benchmark problems analyzed throughout the course of this thesis.
These examples include instances solvable by cvcS but not by Vampire, as well as sets of problems
exhibiting similar characteristics. The purpose of presenting these examples is to illustrate how
Vampire was able to generate complete proofs for certain problems, whereas cvc5 faced difficulties
in making progress toward a resolution.

34.1 Example1

Given Formula

Vr,3g,Vx(Jy : r(x,y)) = r(x,g(x)) =
Vs, (Va:s(a) = 3t :a(t) =

f,Va:s(a) = a(f(a))

This formula articulates a sequence of quantified logical dependencies involving both relational
and functional constructs. The predicate r(x,y) is a binary relation, while g is a function symbol
introduced existentially, applied to the variable x. The initial segment of the implication asserts that,
for all relations r, if for every x there exists a y such that r(x,y) implies r(x, g(x)), then a subsequent
implication ensues. In this subsequent part, s(a) is a unary predicate, and a(¢) is a predicate or
function application involving the variable 7. The structure stipulates that, if for all a, s(a) implies
the existence of a ¢ such that a(r) holds, then there exists a function f such that, for all a, if s(a) is
true, then a(f(a)) is false. This formula intricately combines universal and existential quantification
with implications and nested functions, rendering it a suitable test case for evaluating the symbolic
reasoning capabilities of automated theorem provers.

Negation of the Entire Formula

In logic, a formula is in Negation Normal Form (NNF) if the negation operator (—) is applied only
to atomic propositions, and the only allowed logical connectives are conjunction A) and disjunction

(V). This form is pivotal because it simplifies the logical structure, making it more amenable to
automated theorem proving techniques(13).

To convert a formula into NNF, we systematically eliminate implications (—) and bicondition-
als by expressing them in terms of =, A, and V.

Subsequently, we apply De Morgan’s Laws to push negations inward, ensuring they only affect
atomic propositions. Double negations are also eliminated during this process.

To apply resolution-based theorem proving, we begin by negating the original formula. This is
a standard approach in proof by contradiction, where we assume the negation of the statement we
aim to prove and derive a contradiction.

Negating the original formula transforms it into:

—(Vr,3g,Vx(3y : r(x,y)) = r(x,g(x)) =
Vs, (Va:s(a) = 3t :a(t) =
3f,Va:s(a) = a(f(a)))

Simplification

De Morgan’s Laws
De Morgan’s Laws constitute essential principles within the fields of logic and set theory,
delineating the relationships between conjunctions and disjunctions via the application of negation.

—(aAb) = (—a)V (—b)
—(aVb) = (—a) A (—b)

These laws play a crucial role in the process of transforming logical formulas into Negation
Normal Form (NNF), as they facilitate the systematic movement of negations inward.(6))

In propositional logic, the implication a — b can be transformed into logically equivalent
expressions using other logical connectives. This transformation is useful for simplifying logical
expressions and is particularly beneficial in automated theorem proving.

* Disjunctive Form: a - b= —-aVb
* Contrapositive Form: a - b= -b — —a

These equivalences are essential in logical reasoning and are extensively utilized across diverse
applications, encompassing computer science and mathematics.

(Vr, 3g, Vx, (Fy, rx,y) = r(x,g(x)))
A (3s, da, (s(a) = 3, (a(t))

)
A (Y, 3a, (s(a) A=(a(f(a)))

10

Assign variables: To facilitate comprehension of the formula, descriptive variable names have
been assigned.

r =X, g = X1, X=X, y = X3, S = X4

a=xs, t=x¢ [f=x7

VX(), E|X1, Vx, (3)63 : XQ(Xz,X3) :>X()(XQ,X1(X2))
A (Fxg, Ixs 1 x4(xs5) = Ixg @ x5(x6)
A (W7, s xq(xs) A s (x7(xs))

Skolemization

Skolemization is the procedure employed to remove existential quantifiers from a logical formula
through the introduction of Skolem functions, thereby transforming the formula into Skolem Normal
Form (15). This transformation is of fundamental importance in the domain of automated theorem
proving, especially within resolution-based methodologies, as it simplifies the quantifier structure
of the original formula.

Skolemization Process

The process involves the following steps:

» Skolem Function Introduction: Replacing each existential quantifier with a Skolem function
that depends upon the universally quantified variables preceding it.

* Quantifier Removal: Removing the existential quantifiers, as their impact is now represented
by the Skolem functions.

* The resulting formula is logically equivalent in terms of satisfiability to the original, indicating
that it is satisfiable if and only if the original formula is satisfiable.(15).

Application in Example 1

In our scenario, following the conversion of the formula to Negation Normal Form (NNF),
Skolemization is employed to eliminate existential quantifiers. For example, an existential quantifier
such as Ix1 is replaced with a Skolem function f1(x1), where Xr is a universally quantified variable
that precedes X0. Similarly, other existential quantifiers are substituted with suitable Skolem
functions or constants, contingent upon their scope. This transformation streamlines the quantifier
structure of the formula, rendering it appropriate for resolution-based proof procedures.

e dxy: (x1 = filxo) (Since x| is dependent on xg)
® E|X4, E|X5, E|x6: X4 = C4, X5 = C5, X6 — Cq

* here Jxs in the last line depends on x7 : x5(x7) — f2(x7)

11

So the formula is

Vxo Vo Vs (—|X0(X2,x3) \/X()(Xz,fl (X())()Q))
A (=ea(e3) Ves(cs))
AVx7 (ca(fo(x7)) A=(fa(x7) x7 f2(x7)))

CNF Form

A formula is said to be in Conjunctive Normal Form (CNF) if it constitutes a conjunction (AND) of
one or more clauses, each of which is a disjunction (OR) of literals. A literal is defined as either an
atomic proposition or its negation (14).

CNF serves as a standardized representation that facilitates the application of automated
theorem proving methods, such as the resolution technique. CNF Clauses: Transformation Process
To convert a formula into CNF:

» Eliminate biconditionals and implications: Replace expressions like a—b with —avb.

* Move negations inward: Apply De Morgan’s laws to push negations down to the level of
literals.

 Standardize variables: Ensure that each quantifier uses a unique variable to avoid confusion.
» Skolemize: Eliminate existential quantifiers by introducing Skolem functions.

* Drop universal quantifiers: After Skolemization, all variables are universally quantified by
default.

* Distribute disjunctions over conjunctions: Use distributive laws to achieve a conjunction of
disjunctions.

Application in Example 1

In the case of example 1, following the implementation of the aforementioned transformations,
the formula is transformed into a collection of clauses in Conjunctive Normal Form (CNF), with
each clause representing a disjunction of literals. This standardized form is fundamental for the
subsequent application of the resolution methodology.

—xo(x2,%3) V X0 (x2, f1(x0) (x2)) (C1)
—cq(es) Ves(cg) (C2)

ca(fa(x7)) (C3)
—f2(x7)(x7(f2(x7)) (C4)

w o=

12

Detailed Unification and Resolution Process

In the domain of automated theorem proving, unification is defined as the procedure of determining a
substitution that renders distinct logical expressions identical. This process constitutes a fundamental
component of the resolution method, which is employed to demonstrate the unsatisfiability of a
collection of clauses, consequently confirming the validity of the original formula.

Step-by-Step Unification and Resolution

Step 1: Unify Clause 2 and Clause 3

e Clause 2: =c4(c5) v c5(c6)
e Clause 3: c4(f2(x7))
Unification Process:

* Identify the complementary literals: c4(c5) in Clause 2 and c4(f2(x7)) in Clause 3.
* To unify these, we need a substitution that makes c¢5 equal to £2(X7).
e Substitution: ¢c5 — f2(x7)

Resulting Clause (C5):

* Applying the substitution to Clause 2: =c4(f2(x7)) v f2(x7)(c6)

* Since c4(f2(x7)) is present in Clause 3, their negation and affirmation resolve, leaving:
f2(x7)(c6)

Step 2: Unify Clause 4 and Clause C5

e Clause 4: -f2(x7)(x7(12(x7)))

¢ Clause C5: f2(x7)(c6)
Unification Process:

* Identify the complementary literals: f2(x7)(x7(f2(x7))) in Clause 4 and f2(x7)(c6) in Clause
Cs.

* To unify these, we need a substitution that makes x7(f2(x7)) equal to c6. Substitution: c6 —
x7(f2(x7))

Resulting Clause:

* Applying the substitution to Clause C5: f2(x7)(x7(f2(x7)))

* Now, Clause 4 contains the negation of this literal: =f2(x7)(x7(f2(x7))). Resolving these two
clauses leads to an empty clause (contradiction).

13

Summary of Example 1 Proof

Through meticulous application of negation, Skolemization, transformation into conjunctive normal
form (CNF), unification, and resolution, we have demonstrated that the Example 1 constitutes a
theorem. This analysis was conducted in strict accordance with the proof methodology employed
by the Vampire theorem prover, which successfully resolved the problem. In contrast, the cvcS
solver was unable to reach a solution, thereby highlighting a pronounced disparity in their respective
capabilities.

The proof initiates with the original formula— a logically complex statement composed of
nested quantifiers (both universal and existential), functional dependencies, and conditional implica-
tions. Such a high degree of logical complexity typifies challenging automated reasoning problems.
The initial approach employed by cvcS5 to establish a proof was unsuccessful, primarily due to its
limited capacity to handle intricate logical transformations— including efficient Skolemization,
advanced clause management, and sophisticated unification and resolution strategies.

Vampire’s success can be largely ascribed to its systematic transformation of the problem
utilizing traditional logical methods. It begins with negation, transforming the original problem into
a refutation problem; this approach is foundational, permitting a proof by contradiction whereby
the validity of the original statement is established by demonstrating that its negation leads to a
contradiction.

Following negation, Skolemization is performed to eliminate existential quantifiers by substi-
tuting existentially quantified variables with Skolem functions. This step is vital, as it reduces the
complexity of the formula by removing dependence on existential quantifiers. Vampire executes
Skolemization efficiently, replacing each existentially quantified variable with a function dependent
on the relevant universally quantified variables. This approach presents a challenge for cvcS, which
lacks similarly sophisticated Skolemization techniques.

Subsequently, Vampire transforms the formula into conjunctive normal form (CNF). This multi-
phase process involves eliminating implications, distributing disjunctions over conjunctions, and
standardizing variables. CNF is a fundamental representation in automated theorem proving because
it represents formulas as sets of clauses—disjunctions of literals—facilitating the application of
resolution.

With the formula expressed in CNF, Vampire proceeds with the resolution process. Thanks
to its highly optimized resolution strategies— including clause selection, redundancy elimination,
and saturation— Vampire performs this step effectively. For example 1, Vampire systematically
applies resolution to the clause set, ultimately deriving an empty clause, which signifies a logical
contradiction. This confirms the unsatisfiability of the negation and thereby establishes the validity
of the original formula.

By way of contrast, cvc) failed to arrive at this conclusion. This failure can be attributed to
its limited resolution capabilities, inefficient management of clause interactions, and inadequate
redundancy removal strategies. These limitations prevent cvcS from effectively navigating the
complex search space of dependencies inherent in the problem.

This proof exemplifies the advantages of Vampire as a saturation-based theorem prover ca-
pable of managing the logical intricacies of complex formulas through advanced proof strategies.
Conversely, it also reveals fundamental deficiencies in cvcS related to Skolemization, clause man-
agement, unification, and resolution.

Furthermore, this analysis underscores the critical importance of essential transformations—

14

such as Skolemization, CNF conversion, and resolution— in facilitating successful automated
theorem proving. Vampire’s adept handling of these transformations underpins its success in
resolving problems like example 1, which remain beyond cvc5’s capabilities.

The demonstrated success of Vampire in proving this theorem, juxtaposed with cve5’s failure,
provides a significant benchmark for evaluating and enhancing the effectiveness of automated
theorem proving systems. By identifying the specific conditions under which cvc5 falters while
Vampire succeeds, we gain valuable insights into the strengths and limitations of current methods.
This understanding can guide future developments, particularly in improving cvc5’s performance
through more sophisticated strategies in Skolemization, CNF conversion, unification, and resolution,
thereby advancing its proficiency in handling complex logical problems.

3.4.2 Example 2

Initial Formula

Vavb ((Vx3yvw : (a(x,y,w) V b(x,y,w)))
= (FfVaVw (a(x, f(x),w) Vb(x, f(x),w)))
= 3j¥p: (=Vz: p(z) = p(j(p)))

This formula encodes a hierarchical structure of quantification involving predicates and func-
tions within a sequence of logical implications. The predicates a(x,y,w) and b(x,y,w) are ternary
relations over three variables, and the function symbols f and j are introduced within existential
scopes. The formula begins with a universally quantified premise over a and b, asserting that for all
x, there exists a y, such that for all w, the disjunction a(x,y,w) V b(x,y,w) holds. This asserts that a
certain relational property between these variables is perpetually satisfied.

The subsequent segment introduces a function f, stating that if such a property holds, then there
exists a function f such that for all x and w, either a(x, f(x),w) or b(x, f(x),w) holds—effectively
selecting a specific witness f(x) for y that preserves the original property. Finally, the last implication
asserts the existence of a function j such that, for every unary predicate p, if p holds for all z,
then it must also hold for the specific term j(p). This encodes a meta-logical condition, often
associated with fixed-point behavior or self-application, where j selects a representative element for
which the property p holds. The overall structure demonstrates an intricate interleaving of universal
and existential quantification, implications, and functional abstraction, rendering it an effective
benchmark for testing the depth and flexibility of automated reasoning systems.

Negation of the Formula

= (VaVb ((Yx3yvYw : (a(x,y,w) Vb(x,y,w)))
= (3fVxvw (al(x, f(x),w) V b(x, f(x),w)))
= 3jVp: (=Vz: p(z) = p(i(p)))

15
Simplification

—(VxoVx; (‘v’szIX3‘V’X4 (x0(x2,x3,X4) V x1(x2,X3,%4)))
= Jx5Vx6 V7 (x0(x6,X5(x6),x7) V X1 (x6,Xx5(x6),X7))
= JxgVxg (Ix10x9(x10) = X9(xg(x9))))

(VxOVxl (E|X2VX3V)C4 (—OCO ()CZ,X3,X4) A X1 (XZ,X3,X4))
V (Fxs Vg V7 (x0 (x6, x5 (x6), X7) V X1 (X6, X5 (X6) ,%7)))
/\(VXgEb@ (Hxloxg(xl()) VAN —|x9(xg (X9))>)

Choice Axiom and Skolemization
Assuming:

* X2 = fi(xo,x1)

* x5 = fa(x0,x1)

* X9 = f3(x3)

* x10 = fa(xg)

VXQ\V/XIVX3VX4(_\XQ(]CI (XQ,X1>,X3,)C4) A —X] (f1 (X(),Xl),X3,Xu)
V (Xo(Xe, f2(X0,X1)(X6), X7 V X1 (X, f2(X0,X1)(Xs),X7)))
AVxg(f3(xs)(fa(xs)) A~ f3(xs)(xs(f3(xs))))

CNF Form

(—xo(f1(x0,x1),x3,%4) V x0(x6, f2(x0,X1) (X6),X7) V X1 (X6, f2(x0,X1) (X6),X7))
A (=1 (f1 (x0,%1),x3,%4) V X0 (X6, f2(X0,%1) (X6), %7) V X1 (%6, f2 (X0, %1) (X6), X7))
A Vxg (f3(xs)(fa(xs)) A= f3(xs)(xs(f3(xs))))
Resolution and Unification
Assume:
* x6 = f1(x0,%1)
* x5 = f2(x0,%1)(x6)
* fa(xs) = f3(xs)

Then we derive a contradiction (false), hence the original formula is Theorem.

16

3.4.3 Example 3

Initial Formula

(Vr(Vx 3y (r(x,y)) = 3fVx(r(x(f(x)) = 3j¥p(3zp(z) = p(i(p))))

This formula comprises a sequence of implications involving nested quantifiers, relational
predicates, and higher-order functions. It initiates with a universally quantified relation r(x,y) and
posits that if, for all x, there exists a y such that r(x,y) holds (i.e., VxJyr(x,y)), then there exists a
function f such that, for every x, r(x, f(x)) holds—effectively replacing the existential quantifier
with a Skolem function. The formula proceeds to assert the existence of another function j, such
that, for every unary predicate p, if there exists some z with p(z) true, then p(j(p)) must also be
true. In this context, f and j are functions introduced through existential quantification, while x, z,
and p are universally quantified variables. The overall structure tests the theorem prover’s capacity
to handle dependencies between quantifiers and functions, integrating both first- and second-order
reasoning within a concise framework.

Negation of the Formula

—(Vr(Va3y (r(x,y)) = 3fVx(r(x(f(x)) = 3j¥p(3zp(z) = p(j(p))))

Simplification

(Vr(FxVy=(r(x,y)) vV 3fVx(r(x(f(x)) AVj3p(3Bzp(z) A=p(i(p))))

Skolemization

First part:
* dx can be replaced with f4(r)
* df can be replaced with fi(r)

So, first part is: =X, (fa(r),y) V (r(x, f1(r)(x))

Second part:
» dpis dependent on ¥ j so, p can be replaced with f(j)

o dzis dependent onVj so, z can be replaced with f3(j)

So,second part is: f2(j)(f3(/)) A ~f2(J) (i (f2(7)))

17

CNF Conversion

Cl: =r(f4(r),y) V (r(Xy, f1(r) (x))
C2: f2(j)(f3(4))
C3: = /2(j)(J(f2()))

Resolution

Assumtion and Unification:
* From C2 and C3, unify f3(j) with j(f2(j))
¢ C2 and C3 leads to contradiction.

Since the negation leads to a contradiction, the original formula is a theorem.

Grouping and Interpretation of Similar Benchmark Problems

The benchmark problems Example 1, Example 2, and Example 3 exhibit a notably similar logical ar-
chitecture. Each problem involves extensively nested quantifier alternations, functional abstractions,
and logical implications that necessitate transformation into clause-based representations to facilitate
resolution-based inference. In all three instances, the Vampire prover successfully addressed these
problems through a consistent and systematic methodology: initiating with negation, proceeding to
Skolemization, converting into conjunctive normal form (CNF), and culminating in resolution via
unification and clause saturation. This predictable and reproducible success indicates that Vampire
is particularly well-suited to handle this class of structurally complex logical problems.

In contrast, cve5 was unable to resolve any of these problems. Despite the logical similarity
among the problems and the relatively uniform transformation processes involved, the solver failed
to reach a solution in any case.

Grouping these problems yields valuable insights. It highlights a pattern of solver performance
whereby instances sharing certain structural characteristics consistently yield success in Vampire
but remain unresolved in cvcS. This observation suggests that the current strategies employed by
cveS—particularly regarding Skolemization, clause-level inference, and symbolic rewriting—may
benefit from targeted enhancements when addressing such formulae.

Furthermore, this grouping-based perspective offers a strategic pathway for future develop-
ments in solver technology. By identifying families of problems with common logical structures that
diverge in solvability, we can more precisely identify areas for the extension of cvc5’s capabilities.
Rather than generalizing about broad performance deficiencies, this analysis points to specific
transformation and reasoning stages—such as optimized Skolemization and clause saturation—that
could improve cvcS’s efficacy on logic-intensive problems of this nature.

In sum, analyzing these problems collectively rather than in isolation enables a clearer char-
acterization of the boundaries between current SMT techniques and classical automated theorem
proving strategies, thereby guiding the design of more versatile and hybrid reasoning systems in
future research.

18

3.4.4 Example 4

Initial Formula

Vx0,X3,X2,X1,X5,%4 ((cP(x0,x1,%3) AcP(x1,x2,X4) = (cP(x3,%2,x5) < cPy(x4,x5)) N (Vxg cP(e,x6,%¢))
A (Vx7 cP(x7,e,x7)) A (Vxg cP(x3,x3,€))) = (cP(a,b,ab) = cP(b,a,ab))

This formula employs universal quantification over multiple variables and expresses a series of
logical constraints involving a ternary predicate cP. It states that for all variables x0 through x5, the
following conditions hold: if certain compositional chains over cP are satisfied—specifically, that
cP(x0, x1, x3) and cP(x1, x2, x4) imply an equivalence between cP(x3, x2, x5) and cP(x4, x5)—and
if particular axioms involving a constant e are met—namely, identity-like conditions concerning the
predicate cP—then a final symmetry property logically follows: namely, that if cP(a, b, ab) holds,
then cP(b, a, ab) must also hold. All variables within the formula are universally quantified. This
formula models properties analogous to those encountered in algebraic structures or category theory,
serving as a test of a theorem prover’s capacity to handle extensive quantifier scopes, equivalences,
and chained relational reasoning.

Negation of the Formula

To validate this formula via refutation, the Vampire ATP negates the conjecture and attempts to
derive a contradiction.

—(Vxo,x3,Xx2,X1,X5,X4 ((cP(x0,X1,X3) AcP(x1,x2,%x4) = (cP(x3,x2,x5) < cPy(x4,x5)) A (Vxg cP(e,x6,%¢))
A (Vx7 ¢P(x7,e,x7)) A\ (Vxg cP(x3,x3,€))) = (cP(a,b,ab) = cP(b,a,ab))

Simplification

((meP(x1,x2,x4) V —cP(x0,x1,%3)) V (cP(x3,%2,x5) = cP(x4,x5))) A (Vxg cP(e,x6,%6)) A (Vx7 cP(x7,€,X7))
A (Vxg c¢P(xg,xs,¢)) A (cP(a,b,ab)) AN —(cP(b,a,ab))

CNF Conversion

Each simplified statement is converted into Conjunctive Normal Form (CNF), which consists of a
conjunction of clauses, with each clause being a disjunction of literals.

19

Cl: (P (x1,x2,x4) V 7cP(x0,x1,X3)) V (cP(x3,%x2,X5) = cPy(x4,X5))
C2: cP(e,x6,%X6)

C3: cP(x7,e,x7)

C4: cP(xg,x3,€)

C5: cP(a,b,ab)

C6: —cP(b,a,ab)

Binary Proxy Clausification fiir C1

Binary Proxy Clausification is a technique used to handle equivalences or biconditionals (<) in a
clause, typically of the form: (a <+ b) This is rewritten as:

* (aNb)
* (bVa)

However, more significantly, in automated theorem provers such as Vampire, when an equality
is involved—such as cP(...) = cPx(...)—the automated theorem prover may introduce proxy variables
or partition cases to effectively manage disjunctions.

 Set the left-hand side (e.g., cP(...)) to false

* Or the right-hand side (e.g., cPx(...)) to false

U2)
In C1 the clause was rewritten into two alternative forms — by assuming cP(x3, x2, x5) or
cPx(x4, x5) to be false and resolving accordingly:

Set cP(x3,x3,x5) to false :
Cl: =cP(x3,x2,x5) V cPy(x4,x5) V =cP(x1,Xx2,X4) V —cP(x0,X1,X3)

or set cPy(x4,x5) to false:

Cl7: cP(x3,x2,X5) V —cPy(x4,%5) V —cP(x1,X2,X4) V —cP(x0,Xx1,Xx3)

Superposition

Superposition constitutes one of the most potent inference rules employed in logical theorem proving
with equality. It extends the classical resolution rule to accommodate domains that encompass

20

equations and equalities, which are prevalent in mathematical and logical reasoning processes.
Unlike basic resolution, which solely relies on the logical structure of clauses—such as implications
and disjunctions—superposition enables the reasoner to directly manipulate and reason about
equalities between terms. Consequently, it serves as a fundamental mechanism within saturation-
based automated theorem provers, such as Vampire.

Fundamentally, superposition facilitates the substitution of terms utilizing established equalities.
Specifically, when two terms are known to be equal— for example, if a clause asserts s = t—the
superposition rule permits the replacement of an occurrence of s within any other clause with t,
provided certain conditions are satisfied. These conditions may include constraints related to term
ordering, unifiability, and the selection functions employed by the prover. This process effectively
incorporates the known equality into the broader set of clauses, propagating its influence and
enabling the derivation of further inferences.

To understand this more concretely, consider two clauses:

* A clause that includes an equality, such as s = t;

* Another clause in which s appears as a subterm, say in a literal like P(..., s, ...).

The superposition rule allows for the substitution of the subterm s within the second clause
with t, resulting in the formation of a new clause. This resultant clause may subsequently be utilized
in additional inference procedures, thereby expanding the set of clauses until either a contradiction is
encountered or no further information can be derived. The underlying principle is that, since s and t
are equivalent, the logical meaning of the clause remains intact following the substitution. However,
unlike naive substitution, superposition operates with full formal rigor; it involves unification,
ensures soundness, and adheres to the syntactic constraints stipulated by resolution-based calculi.

* Using Superposition for C1 and C3:(assume xg = x7,x] = e,x3 = Xx7)
C7: —cP(x7,x2,x5) V cPy(x4,x5) V —cP(e,x7,X4)

Using Superposition for C7 and C5:(assume x7 = a,x; = b,xs5 = ab)
C8: cPy(x4,ab) V —cP(e,b,x4)

Using Superposition for C1“ and C8:(assume in Cl1~ X3 =e,xp = b,x5 = x4)
C9: —cPy(x4,x4) V cP(x4,ab) V —cP(x1,b,x4) V =cP(x0,x1,X3)

Using Superposition for C9 and C3:(assume x| =x7,b = e,x4 = Xx7)
C10: —¢cPy(x4,x7) V cP(x7,ab) V —cP(x7,e,x7) V =cP(x0,X7,X3)

Using Superposition for C10 and C4:(assume xg = xg,X7 = Xg,X3 =€)
Cl1: —cPy(x4,x8) V cPy(xg,ab)

Using Superposition for C8 and C4:(assume e =xg,b = xg,x4 = ¢€)
C12: cP.(e,ab)

21

Using Superposition for C11 and C12:(assume x4 = e,x3 = ab)
C13: c¢P,(ab,ab)

Using Superposition for C1° and C6:(assume x3 = b,x; = a,xs = ab)
Cl4: —cPy(xq4,ab)V —cP(xy,a,x4) V =cP(x0,x1,b)

Using Superposition for C14 and C3: (assume X = x7,X] = e,b = x7)
C15: —cPy(x4,ab) V —cP(e,a,x4)

Using Superposition for C15 and C2:(assume a = Xg,X4 = X¢)
C16: —cPy(xg,ab)

Using Superposition for C13 and C16: (assume ab = xg)
C13: cPy(xg,ab)

From looking at C13 and C16, C13 is negation of CI16
So, this leads to contradiction.

Hence, the original formula is Theorem

Summary of Example proof

Through a meticulous application of negation, Conversion to Conjunctive Normal Form (CNF),
Binary Proxy Clausification, and superposition, it is demonstrated that example 4 constitutes a
theorem. This proof adhered closely to the methodologies implemented by the Vampire theorem
prover, which successfully resolved the problem. Conversely, the cvc5 solver failed to establish the
theorem, thereby underscoring the divergence in capabilities between saturation-based automated
theorem proving systems and SMT-based frameworks.

The original formula exhibits a complex logical architecture characterized by nested universal
quantifiers, ternary function symbols, and implications involving biconditional subformulae. No-
tably, the conjecture posits a form of commutativity for the operation cP, predicated upon certain
associativity-like and identity properties. This intricate structure presents substantial challenges to
automated reasoning tools, especially when equalities, compositions, and chained inferences are
deeply embedded within the logical formulation.

The proof commences with the negation of the conjecture to facilitate a refutation-based
strategy. This critical transformation shifts the problem from direct proof to demonstrating the
inconsistency of the negated statement. Subsequently, the negated formula undergoes simplification
and is transposed into conjunctive normal form (CNF). This process involves eliminating impli-
cations and restructuring the logical expression into a conjunction of disjunctions, conforming to
standard practices in clause-based automated reasoning.

22

A distinctive aspect of this proof, setting it apart from more conventional approaches, is the
employment of Binary Proxy Clausification. This technique is utilized to handle equivalences such
as (a <> b) within the CNF. Instead of expanding this biconditional directly into two implications,
Vampire introduces propositional flexibility by considering cases where either side may be false,
thereby generating multiple clauses that facilitate more efficient reasoning. This approach allows
the inference engine to split the biconditional into multiple reasoning paths, which can be explored
in parallel during clause saturation.

The most pivotal advancement in this proof is the utilization of superposition—a rule extending
classical resolution by enabling equalities to be used for rewriting terms. Superposition allows the
system to replace terms within clauses based on established equalities, which is essential when
dealing with functional terms and nested compositions. In example 4, superposition is employed
repeatedly to propagate equality information, instantiate variables systematically, and derive new
clauses linked to earlier inferences. This iterative reasoning process ultimately yields a contradiction,
thereby establishing the unsatisfiability of the negated formula.

Vampire’s capacity to systematically apply superposition within a saturation-based framework
is instrumental to the proof’s success. The intricate clause interactions involve deeply nested
structures, multiple inference pathways, and equality-driven substitutions requiring precise variable
unification. Vampire’s internal mechanisms for clause selection, simplification, and ordering
optimize the management of this complexity, contributing significantly to the proof’s efficiency.

In contrast, cvc) fails to resolve this problem, primarily due to its lack of support for full
saturation-based superposition. Although efficient in quantifier instantiation and certain theory
reasoning tasks, cvcS’s inference engine does not implement advanced equality handling techniques
such as equational clause saturation. This deficiency hampers its ability to navigate the heavily
equational and nested functional structures characteristic of this problem. Additionally, cvcS’s lim-
ited capacity for managing chained implications and proxy clausification constrains its applicability
to problems rich in equalities and complex logical constructs.

In conclusion, the successful proof of example 4 by Vampire exemplifies the potency of
saturation-based theorem proving, especially when augmented with Binary Proxy Clausification
and superposition techniques. The inability of cvcS to solve the problem highlights current limita-
tions within SMT technology regarding sophisticated equality reasoning and the employment of
saturation-based inference mechanisms. This case serves as a valuable benchmark for evaluating
the comparative strengths and limitations of different automated reasoning paradigms. Furthermore,
it underscores potential avenues for enhancement in SMT solvers, notably in handling equality
reasoning, supporting saturation-based inference strategies, and implementing advanced clause
transformation methodologies.

4 Experiments

The primary objective of this study is to identify and thoroughly analyze instances in which cvcS is
unable to resolve specific problems from the TPTP library, whereas Vampire is capable of doing
so. Such instances are of particular significance, as they illuminate potential deficiencies in the
reasoning mechanisms employed by cvc5 or in its overall design and implementation. Through
meticulous documentation of these cases, the research aims to investigate the underlying causes
contributing to cvc5’s difficulties in these scenarios.

23

To carry this out, a clear plan is followed:

* Execution of the Tests: Both cvc5 and Vampire are configured to operate on a carefully

selected subset of problems from the TPTP library, ensuring diversity in problem type and
difficulty.

* Result Comparison: Upon completion of the tests, the study examines instances where cvc5
fails to find a solution whereas Vampire succeeds.

* Detailed Analysis: For each discrepancy, an in-depth investigation is conducted. The team
analyzes the structure of the problems, the tactics employed by Vampire, and the reasons
behind cvc5’s difficulties.

* Manual Reconstruction of Proofs: In certain cases, proofs are reconstructed manually to
gain deeper insights into the reasoning processes and to verify the results.

Through meticulous adherence to this methodology, the study aims to identify valuable strategies to
enhance cvc5’s performance and to advance the broader field of automated theorem proving.

4.1 The TPTP Problem Library

The Thousands of Problems for Theorem Provers (TPTP) library, compiled by Geoff Sutcliffe, serves
as the primary benchmark for research in automated theorem proving. It provides a meticulously
organized collection of problems, categorized by domain, logic type, and difficulty level, thereby
offering researchers a reliable foundation for assessing and comparing various ATP systems in a fair
and consistent manner (10). The TPTP library is regularly updated to ensure its continued relevance
and to serve as a challenging test environment for contemporary theorem provers. Its structure,
which encompasses classifications such as algebra, geometry, set theory, and logic puzzles, delivers
a comprehensive overview of diverse logical domains (10).

In addition to performance evaluation, the TPTP framework has influenced the development
and refinement of new theorem-proving methodologies. Its broader infrastructure—such as the
SZS ontology for annotating problem outcomes—has facilitated greater reproducibility of results
and enhanced transparency in evaluations across competitions and scholarly research. Notably, the
TPTP library underpins the CADE ATP System Competition (CASC), an annual event designed to
evaluate prominent ATP systems on a representative subset of TPTP problems. This competitive
platform has significantly contributed to the advancement of ATP efficiency and robustness over the
years (3)).

4.2 Experimental Setup

The experiments conducted in this study were carried out within a Linux environment, utilizing
Ubuntu as the chosen operating system. Ubuntu was selected due to its optimal balance of stability
and extensive support for the tools required in automated theorem proving. Within this environment,
the theorem provers Vampire, cvc4, and cveS were installed and configured meticulously to ensure
seamless operation. The entire TPTP (Thousands of Problems for Theorem Provers) library was

24

downloaded directly from its official website (www.tptp.org) and employed as the comprehensive
set of benchmark problems for all testing procedures.

The TPTP library categorizes its problems systematically into directories, each associated with
a specific logical domain or a defined level of difficulty. Within these directories, individual problem
files are stored with a .p extension, each representing a distinct logical claim that necessitates proof.
This organized structure facilitated a structured, step-by-step approach to processing the benchmark
problems and provided a systematic framework for the experiments.

4.3 Scripting and Test Execution

To automate the testing process, custom shell scripts were developed to manage the operational
workflow. These scripts sequentially processed all .p files within each designated TPTP folder,
utilizing the cvcS solver. During each processing step, the output of cvcS was captured and
categorized based on the returned result. Particular attention was given to cases where cvc5 either
resulted in a timeout or returned an “Unknown” status. A “Timeout” indicated that the solver
was unable to complete the problem within the predefined time limit, whereas an “Unknown”
status signified that cvcS was unable to determine the validity of the problem within its reasoning
capabilities.

For each batch of problems, a new Excel worksheet was generated to maintain an organized
record. Each row corresponded to a different problem, documenting the filename and the outcome
provided by cvcs.

Following the completion of cvc5 runs, the same procedures were repeated using Vampire.
Vampire was selected due to its well-established performance and proven track record in theorem
proving competitions. Similar automated scripts processed each folder with Vampire, and the results
were systematically recorded for subsequent comparative analysis.

4.4 Benchmark Filtering and Comparison

After gathering all the results from both cveS and Vampire, the next step was a detailed comparison.
The main goal was to spot problems where cvc5 couldn’t give a clear answer—whether it ”timed
out” or reported “Unknown”—but Vampire managed to solve the problem. Vampire’s successful
outcomes showed up as statuses like ”Theorem,” Satisfiable (SAT),” or “Unsatisfiable (UNSAT).”

Each case was double-checked against the Excel sheets to make sure the match was correct.
Whenever a problem fit the pattern—cvc5 struggling and Vampire succeeding—the file was marked
for closer study. This careful filtering trimmed down the huge TPTP collection into a smaller, more
meaningful set of tough problems that really showed the practical differences between the two
provers.

This comparative analysis was crucial in identifying the strengths and weaknesses of each
prover. By focusing on the cases where Vampire succeeded and cvcS did not, insights were
gained into the specific problem characteristics that posed challenges for cvc5. Such characteristics
included the presence of complex quantifier structures, intricate equality reasoning, or particular
theory combinations.

Furthermore, this filtering process enabled the categorization of problems into distinct groups
based on their logical features, facilitating a more targeted investigation into the limitations of
cvcS’s reasoning capabilities.

25

4.5 Data Collection and Validation

To systematically record the benchmarking outcomes, a dedicated Excel worksheet was created for
each benchmark directory within the TPTP library. Within each worksheet, all individual benchmark
files from the respective directory were cataloged. For each problem, the result generated by cvc5
was documented, with particular emphasis on cases where the solver either exceeded the time limit
(timed out) or returned an “Unknown” status. These instances were of primary interest, as they
indicated scenarios wherein cvcS was unable to either complete the problem within the allocated
time or determine the satisfiability status conclusively.

Subsequently, these challenging benchmarks were re-evaluated utilizing the Vampire theorem
prover. The results from Vampire were recorded in a manner consistent with the initial data
collection, focusing on cases where Vampire successfully provided definitive outcomes, such as
”Theorem,” ”Satisfiable (SAT),” or “Unsatisfiable (UNSAT).” In the respective Excel worksheets,
benchmarks in which Vampire succeeded but cvc5 failed were distinctly highlighted. These cases
constituted the core dataset for subsequent in-depth analysis.

To ensure the integrity and reliability of the collected data, a validation procedure was im-
plemented. This involved cross-verifying the automated results with manual re-executions for a
randomly selected subset of benchmark problems. Any discrepancies identified were thoroughly
investigated and rectified to maintain dataset accuracy.

Furthermore, relevant metadata—including problem size (quantified by the number of clauses
and literals), domain categorization, and logical complexity—was annotated for each benchmark.
This enriched dataset facilitated a more detailed analysis of factors influencing the performance of
the theorem provers.

4.6 Benchmark Results
4.6.1 Key Findings and Problem Grouping

Through this two-stage evaluation, distinct patterns emerged across problem types that elucidated
the comparative strengths of the two provers. A substantial proportion of the problems that cvcS
failed to solve—yet Vampire successfully resolved—exhibited specific structural characteristics.
These problems typically demonstrated a high degree of symbolic density, including deeply nested
quantifiers, layered implications, and sequences of equalities. Addressing such problems often
necessitates the application of inference strategies such as Skolemization, resolution, and unification,
which are fundamental components of Vampire’s saturation-based architecture. In these instances,
cvces either exceeded the allotted time or returned an “unknown” result, whereas Vampire was able
to derive complete proofs. This category constituted the majority of the benchmarks where the
performance of the two solvers diverged.

Another prominent group of benchmarks involved problems related to functional dependencies
and equational reasoning, including recursive terms and algebraic expressions. These problems
frequently benefit from techniques such as superposition and rewriting, which Vampire implements
with efficiency. Such inference mechanisms enable Vampire to simplify complex functional rela-
tionships into forms that are more readily resolvable. In contrast, cvcS lacks integrated saturation
or superposition mechanisms and consequently encountered difficulties in progressing on these
problems. This further underscores the advantage of Vampire’s clause-based symbolic handling in

26

equational reasoning domains.

A third classification encompassed problems of moderate logical complexity, often charac-
terized by chains of universal quantifiers, uninterpreted symbols, and implication-rich formula
structures. Although less complex than the previous categories, these problems still posed challenges
for cvc5, primarily due to the absence of clause-level symbolic reasoning capabilities. Vampire’s
adaptable use of inference rules allowed it to consistently complete these problems, demonstrating
its efficacy even in cases of intermediate logical complexity.

Additionally, it is important to note that a subset of the benchmark problems remained unsolved
by both provers. These cases likely involve undecidable logical fragments or require inference steps
beyond the capabilities of current solvers within feasible time and resource limits. These instances
highlight the persistent challenges in automated theorem proving, particularly when addressing the
full scope of higher-order logic.

4.6.2 Broader Implications

The divergence in performance observed between cvc5 and Vampire across the curated problem
set offers valuable insights into solver specialization. cvc5 demonstrates superior capabilities in
theory-intensive, quantifier-light contexts and is recognized as a leading performer in domains such
as verification and constraint solving (1). Conversely, in purely symbolic logic tasks characterized
by structural quantification, Vampire’s resolution-based architecture, along with Skolemization and
clause saturation techniques, provides it with a significant advantage (12)).

Rather than interpreting this as a limitation of cvc5, these findings highlight targeted opportu-
nities for enhancement and development of cvcS. Additionally, the observed grouping patterns of
problems suggest avenues for designing adaptive or advance cvc5 capable of selecting the most
appropriate approach on specific problem characteristics.

4.7 Identification of Problem Patterns

After aggregating the results of the comparisons, each instance in which Vampire succeeded while
cve5 did not was meticulously examined. This process involved opening each .p file, analyzing the
structure of the problem, the construction of the logical expressions, and the complexity of the setup.
Additionally, the outputs and proof trails of Vampire were reviewed to ascertain how it successfully
resolved each problem.

This detailed examination revealed certain recurring patterns. The more challenging problems
were categorized based on shared characteristics, such as:

Logical structure: Extensive use of quantifiers or multiple layers of nested functions.

Problem size: Large terms or numerous clauses to process.

* Reasoning challenges: Difficulties associated with handling equations or addressing Skolem-
ization.

* Theory-specific issues: Problems related to aspects such as uninterpreted functions or
particularly challenging axioms.

27

Breaking down the benchmarks into these groups provided a clearer understanding of where cvcS
tends to encounter difficulties. It also highlighted which proof strategies or heuristics may require
further enhancement to bridge the existing gap.

5 Analysis

5.1 Overview of Comparative Results

The experiments conducted in this thesis have revealed significant and reproducible disparities
between two widely utilized automated reasoning systems—cvc3, a solver for satisfiability modulo
theories, and Vampire, a saturation-based logical theorem prover. The experiments encompassing
23 logical problem sets from the TPTP library demonstrated that, although both tools are effective
within their respective scopes, cvcS consistently underperformed in problems characterized by
highly nested logical structures, alternation of universal and existential quantifiers, or abstraction
involving predicates and functions.

In instances where cvc5 either timed out or yielded an *unknown’ response, Vampire frequently
succeeded by establishing a complete proof trace leading to either a contradiction or affirmation
of a conjecture. This divergence was particularly pronounced in higher-order problems or those
with minimal theoretical content. This chapter presents a multi-faceted explanation for these results,
beginning with the identification of failure patterns in cvc5, followed by an examination of the
internal mechanisms of Vampire that contribute to its successes, and concluding with an analysis of
design implications and potential architectural enhancements.

5.2 Patterns in cvce5 Failures

Although cvc5 is a general-purpose and exceptionally high-performance SMT solver, renowned
for its proficiency in addressing theory-rich, quantifier-light problems, it has consistently underper-
formed with higher-order or purely logical problems within our benchmark suite. These failures
were not incidental but reflected the intrinsic design architecture and inference strategies employed
by cvcS. Unlike saturation-based provers such as Vampire, cvc5 lacks essential mechanisms in-
cluding general resolution, unification, Skolemization, binary proxy clausification, and, crucially,
superposition. The absence or limited implementation of these foundational automated theorem
proving (ATP) techniques significantly contributes to cvcS’s inability to prove challenging logical
formulas from the TPTP library.

5.2.1 Skolemization Incompatibility

Skolemization is a fundamental preprocessing step in automated theorem proving that transforms
existential quantifiers into function terms that depend on previously quantified variables. This
transformation is critical for converting logical formulas into a form suitable for clause-based
reasoning and resolution.

Vampire conducts comprehensive Skolemization early in its processing pipeline, introducing
Skolem functions that capture logical dependencies among variables. For example, in problem

28

Example 1, Vampire introduces function symbols such as f1(X) to eliminate existential quantifiers,
thereby rendering the resulting set of clauses amenable to resolution and unification.

Conversely, cveS does not employ traditional Skolemization across general first- or higher-
order logic. Its treatment of quantifiers is heuristic and often incomplete. It utilizes E-matching
and counterexample-guided quantifier instantiation (CEGQI) methods, which are heavily reliant on
pattern matching. While these techniques are highly effective in various SMT contexts, particularly
in verification tasks, they do not structurally eliminate existential quantifiers and fail to generate a
fully ground, Skolemized clause set necessary for saturation-based reasoning.

As a result, cveS often remains impeded and is unable to transform the formula into a form
from which a contradiction can be derived through logical inference.

5.2.2 Absence of Resolution Calculus

Resolution constitutes the foundational inference rule of first-order automated theorem proving.
It enables the generation of a resolvent clause from two clauses with complementary literals,
progressively narrowing down the clause space until either a contradiction (empty clause) is
discovered or saturation is achieved.

Vampire excels at resolution-based reasoning, systematically applying resolution across all
pairs of clauses while optimizing the search through redundancy elimination and clause prioritization.
This approach is central to its success in problems such as Example 4, where the chaining of
relational properties through resolution was crucial for establishing the conjecture.

By design, cvc5 does not incorporate general-purpose resolution. Its conflict-driven clause-
learning (CDCL) SAT solving is focused on Boolean conflicts, with any resolution-like reasoning
constrained to ground-level Boolean abstractions. When faced with quantified logical expressions
that necessitate symbolic resolution across abstract terms, cveS lacks the inference machinery
required to proceed, resulting in either a timeout or an “unknown” verdict.

This structural deficiency renders cvcS unsuitable for reasoning chains that require the merging
and simplification of clauses through general resolution.

5.2.3 Inability to Perform Unification

Unification—the process of identifying a substitution that renders two terms syntactically iden-
tical—is essential for effectively applying resolution. In higher-order or function-rich problems,
unification becomes increasingly intricate yet critical.

Vampire extensively employs syntactic unification and rewriting. It can match variable terms
across clauses, resolve them under substitutions, and maintain those substitutions throughout the
proof tree. This capability enables it to chain inferences even when functions are nested or when
arguments must be unified with Skolem terms.

In contrast, cvcS does not support general symbolic unification. Its quantifier instantiation is
heuristic and lacks a global substitution framework necessary for clause-level inference. Without
unification, cvcS is unable to reconcile the variable bindings essential for executing multi-step
logical deductions. This limitation was evident in benchmarks such as Example 1 and Example 2,
where function instantiations depended on unifying multiple argument structures—an operation that
Vampire successfully managed, but cvc5 did not.

29

The absence of unification not only impedes resolution but also precludes the ability to track
variable dependencies within Skolemized logic chains.

5.2.4 Lack of Binary Proxy Clausification

Binary proxy clausification is a transformation technique utilized to simplify complex formulas,
particularly biconditionals and implications, into binary clauses with proxy terms. This approach
facilitates manipulation of the formula through resolution and unification.

In Example 4, Vampire transforms a deeply nested biconditional into a collection of binary
clauses utilizing proxy functions. These binary proxies serve as placeholders for subformulas,
thereby allowing for the separation of clauses and targeted resolution. This technique enables
Vampire to address compositional logic structures without becoming enmeshed in excessively large
or overlapping clauses.

cvc5 does not implement binary proxy clausification. Its internal representation of formulas
preserves more of the original logical structure, without introducing intermediate placeholders. This
design choice simplifies integration with theory solvers but severely limits clause-level flexibility.

5.2.5 Absence of Superposition Calculus

A fundamental structural limitation of the cvc5 system is the absence of superposition, an inference
rule that enhances resolution by facilitating reasoning with equalities. Superposition allows for
the replacement of terms in one clause with equal terms from another, thereby enabling inference
across functionally or algebraically equivalent expressions.

The superposition engine of Vampire is among its core advantages. It efficiently employs term
indexing and ordering constraints to implement superposition. In problems that are heavily algebraic
or in logical puzzles characterized by symmetry, superposition empowers Vampire to consolidate
logically equivalent terms and deduce contradictions that would otherwise be inaccessible through
resolution alone.

In contrast, cvcS lacks any form of superposition. Its equality reasoning is addressed at the
theory level, for instance, utilizing congruence closure in the theory of equality with uninterpreted
functions; however, it does not engage in a clause-level, inference-driven approach. Consequently,
cveS can resolve simple equalities within constrained theories, yet it is unable to rewrite symbolic
equalities within the context of proof search. This limitation becomes particularly critical in
higher-order problems, where equalities are often functional, nested, or recursive.

6 Conclusion

The primary objective of this thesis has been to conduct a rigorous benchmarking and theoretical
analysis comparing two fundamentally different paradigms in automated reasoning: cvc5, a state-
of-the-art SMT (Satisfiability Modulo Theories) solver, and Vampire, a traditional saturation-based
automated theorem prover. The research was motivated by a striking and recurring observa-
tion—cvc), despite its strong performance on theory-rich problems, often struggles with a variety
of higher-order problems characterized by symbolic complexity from the TPTP (Thousands of
Problems for Theorem Provers) corpus. In contrast, Vampire frequently excels on the same problem

30

set. This prompted a focused investigation not only to determine where these discrepancies arise
but also to explore the underlying reasons and what these insights reveal about the capabilities and
design limitations of each system.

To achieve this, a comprehensive benchmark framework was developed, which facilitated
automated testing on problems from 23 distinct folders within the TPTP library, utilizing both cvc5
and Vampire. This framework examined a broad spectrum of logical domains. Each problem was
subjected to identical memory and runtime conditions, with outputs categorized and documented
for comparative analysis. A central focus remained on identifying those problems where cvcS
encountered failures—either through timeouts or returning an “unknown’ result—when Vampire
was able to successfully demonstrate a proof. The quantity and nature of such instances exhibited a
consistent trend: cvcS tends to perform poorly in domains characterized by minimal background
theory and strong logical abstraction.

This benchmarking process transcended mere performance comparisons. It served as a lens
through which deeper structural weaknesses of each solver could be illuminated. cvcS’s failures
were not typically random; rather, they displayed familiar patterns associated with the alternation of
quantifiers, the depth of logical dependencies, and the lack of theory-dependent support. Conversely,
the successes of Vampire were not coincidental either; they stemmed from the deliberate use of
classical ATP mechanisms such as clause saturation, resolution, unification, Skolemization, and
superposition.

One significant component of this thesis involved the reconstruction and formal transformation
of specific benchmark problems including Example 1, Example 2, and Example 4. These problems
were meticulously transformed through the complete proof pipeline of Vampire, encompassing
negation, NNF translation, Skolemization, conversion into CNF, and concluding with clause-level
resolution. Through this transformation process, critical features absent from cvc5 were brought to
light.

Firstly, cveS does not apply standard Skolemization as practiced in traditional ATPs. Existential
quantifiers are not eliminated; rather, they are managed through heuristic instantiation techniques,
which fall short in problems necessitating robust logical transformation. Secondly, cvcS does
not possess general resolution mechanisms or the ability to achieve clause saturation. It lacks
the capacity to systematically combine clauses in order to produce resolvents, a fundamental
characteristic of classical proof search. Additionally, it does not incorporate unification, which
involves finding substitutions that render different terms equivalent, within a more general symbolic
context. cvcS is unable to track substitutions between different clauses in a manner that permits
chained deductions. Lastly, the absence of superposition—a potent equality reasoning method that
is pivotal in Vampire’s inference system—renders cvc5 largely insensitive to functional symmetries
and equalities. Collectively, these structural shortcomings account for its inability to make progress
on higher-order or proof-theorem-free logical problems.

In contrast, Vampire is architecturally designed for these particular problem classes. Skolem-
ization is enacted early in the process, reducing existential quantifiers to functional terms and
thus streamlining problem structure. Its resolution-based inference engine explores a wide array
of candidate clause sets, employing saturation to ascertain logical consequences. Unification is
utilized for the combination of symbolic terms and the propagation of equalities across proof states.
Moreover, Vampire’s application of binary proxy clausification, in addition to superposition, allows
it to decompose large and complex formulas into manageable components and to rewrite terms in
the context of equality logic.

31

These strategies enable Vampire to systematically navigate a proof space that remains largely
inaccessible to cvc)S. Its successes on examples specified in this theisi where equality reasoning and
nested functions are essential—underscore its superiority over the newer SMT solver cvc5 in purely
symbolic contexts.

The insights derived from this comparative study transcend mere descriptiveness; they carry
significant implications for the future design of automated reasoning systems. The findings suggest
that the existing dichotomy between SMT solvers and ATPs is inherently restrictive. SMT solvers
such as cvc5 are optimized for specific classes of problems, particularly those involving arithmetic,
data types, or arrays with shallow quantification. Conversely, ATPs provide unparalleled symbolic
reasoning capabilities, especially in situations where saturation and general-purpose inference are
required. Bridging this divide will necessitate a reevaluation of solver architecture to facilitate
dynamic adaptation according to problem characteristics.

A hybrid system that amalgamates the modular theory reasoning capabilities of cvc5 with the
ability to invoke saturation or resolution-based inference when theory solvers encounter difficulties
could represent a promising avenue for future research. Likewise, the integration of symbolic unifi-
cation, advanced Skolemization, or superposition reasoning into SMT solvers could considerably
extend their applicability in logic-intensive domains.

Building upon this work, future investigations may take several directions. One natural exten-
sion is the incorporation of machine learning techniques into solver control strategies. Learning-
based systems could optimize quantifier instantiation, clause selection, or the prioritization of
inference rules. Initiatives like DeepMath, which explore premise selection, clause weight adjust-
ment, and proof path prediction using neural networks, could be adapted for application in both
ATP and SMT environments.

Furthermore, the benchmarking dataset produced in this thesis—particularly the subset of
TPTP problems wherein cvc5 failed and Vampire succeeded—can serve as a valuable resource for
solver development, regression testing, and optimization. These problems highlight the edge cases
where current systems diverge and create a focused platform for experimentation and performance
evaluation.

Another significant future endeavor could involve the integration of automated theorem provers
with interactive proof assistants such as Coq or Isabelle/HOL. The manual proof transformations
and logical decompositions presented in this thesis could serve as templates for automation modules
within those environments, thereby reducing user overhead in the construction of formal proofs.

Lastly, there is ample opportunity for expanding the scope of benchmarking itself—by intro-
ducing mixed theory-logic problems, combining verification-like constraints with abstract logical
reasoning, and comparing not only cvcS and Vampire but also other tools such as Z3, E Prover, and
iProver.

This thesis commenced with a straightforward inquiry: why does cvc5 falter on certain logical
problems that Vampire successfully resolves? Through systematic benchmarking, rigorous proof
reconstruction, and careful comparative analysis, this inquiry has been addressed in both theoretical
and practical aspects. cvcS’s reliance on theory solvers and its lack of general symbolic inference
render it ill-suited for domains necessitating clause saturation, Skolemization, resolution, or equality-
based rewriting. In contrast, Vampire’s classical inference methods are precisely the tools required
for such domains.

By elucidating this gap and providing a structured foundation for understanding it, this thesis
not only augments the comprehension of contemporary reasoning systems but also opens avenues

32

for bridging this divide—by learning from the strengths of both paradigms and progressing toward
more unified, intelligent, and adaptive automated theorem proving systems.

References

[1] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Notzli, et al. cvcS:
A versatile and industrial-strength smt solver. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 415-442. Springer, 2022.

[2] Clark Barrett, Leonardo De Moura, and Aaron Stump. Smt-comp: Satisfiability modulo
theories competition. In International Conference on Computer Aided Verification, pages
20-23. Springer, 2005.

[3] Clark Barrett, Leonardo de Moura, and Aaron Stump. Smt-comp: Satisfiability modulo
theories competition. pages 20-23, 01 2005.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0. Proceedings
of the 8th International Workshop on Satisfiability Modulo Theories (SMT °09), 2009.

[5] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Encoding higher-order
logic in first-order logic: On the correctness of translating hol to fol. Journal of Automated
Reasoning, 56(3):237-259, 2016.

[6] Wikipedia Contributors. De morgan’s laws - wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/De_Morgan’27s_laws, 2025. Last accessed: May 18, 2025.

[7] John Harrison. Handbook of practical logic and automated reasoning. Cambridge University
Press, 2009.

[8] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, Francois Chollet, and
Josef Urban. Deepmath-deep sequence models for premise selection. Advances in neural
information processing systems, 29, 2016.

[9] Alan JA Robinson and Andrei Voronkov. Handbook of automated reasoning, volume 1.
Elsevier, 2001.

[10] Geoff Sutcliffe. The tptp problem library and associated infrastructure. Journal of Automated
Reasoning, 59(4):483-502, 2017.

[11] TPTP Organization. Thousands of problems for theorem provers (tptp), 2024.

[12] Andrei Voronkov. The anatomy of vampire: Implementing bottom-up procedures with code
trees. Journal of Automated Reasoning, 2014.

[13] Wikipedia contributors. Negation normal form, 2024. Accessed: 2025-05-18.
[14] Wikipedia contributors. Conjunctive normal form, 2025. Accessed: 2025-05-18.
[15] Wikipedia contributors. Skolem normal form, 2025. Accessed: 2025-05-18.

https://en.wikipedia.org/wiki/De_Morgan%27s_laws
https://en.wikipedia.org/wiki/De_Morgan%27s_laws

	Introduction
	Motivation
	Overview

	Background
	Automated Reasoning and Theorem Proving
	SMT Solvers
	Comparison SMT Solvers and in general ATPs
	Benchmarking in Automated Theorem Proving

	Main Contribution
	 Project Structure and Setup
	Comparative Analysis of cvc5 and Vampire
	Proof Transformation Process
	Benchmark Problem Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Experiments
	The TPTP Problem Library
	Experimental Setup
	Scripting and Test Execution
	Benchmark Filtering and Comparison
	Data Collection and Validation
	Benchmark Results
	Key Findings and Problem Grouping
	Broader Implications

	Identification of Problem Patterns

	Analysis
	Overview of Comparative Results
	Patterns in cvc5 Failures
	Skolemization Incompatibility
	Absence of Resolution Calculus
	Inability to Perform Unification
	Lack of Binary Proxy Clausification
	Absence of Superposition Calculus

	Conclusion

