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Abstract
Resolution is a theorem proving technique that uses proof by contradiction to determine the
satisfiability of logical formulas. Resolution is often used in automated theorem proving systems,
which help to automatically prove mathematical theorems using computer programs. As part of this
thesis, I developed a resolution prover for first order logic inputs in the Rust language, which has
not existed before. First, a resolution prover for propositional logic inputs was developed, which
then served as the basis for the development of a resolution prover for first order logic inputs. In
this bachelor thesis, I describe the theoretical foundations and the implementations made in order to
develop a resolution prover in Rust for first order logic inputs.

Keywords: Resolution Prover, Rust, First Order Logic, FOL, Propositional Logic, Automated
Theorem Proving, Theorem Prover, Unification, CNF, CNF Conversion.
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1 Introduction

1.1 Motivation
In our data-driven and highly automated world, it is crucial to understand the underlying decision-
making mechanisms and processes used in automated logical reasoning. One example for such
mechanism is resolution, which plays a central role in formal logic and theorem proving. In this
thesis paper, I will explain the development of a resolution prover for first-order logic (FOL) and
propositional logic inputs and emphasize to the importance of such provers. Before I explain how I
created my resolution prover and also how it works I generally want to outline the importance of
automated theorem provers and how a resolution prover fits in this topic.

Automated theorem proving (ATP) is a computer-based technique that is used to automatically
prove mathematical theorems. Automated theorem proving is based on formal logic and reasoning
mechanisms that aim to prove (or disprove) the validity of a specific input, e.g. a mathematical
thesis. This involves demonstrating how an assertion (the theorem to be proven) can be logically
derived from a set of assumptions or axioms. The practical applications of automated theorem
provers are incredibly diverse, as they help to ensure the correctness of (mathematical) systems.
A typical example of a practical use of automated theorem provers is the verification of software.
There, theorem provers are used to check whether a software program meets certain specifications
like correctness or also security requirements. To do this, the actual functionalities and structure
of the software must first be formalized, as well as the behavior or properties to be checked. A
well-known example of the use of ATP for the verification of software is the Z3 Theorem Prover,
which was developed by Microsoft Research and is used in particular to check and guarantee the
security of code in Windows operating systems (Microsoft 2024). Automated theorem provers are
therefore used in many different ways and can vary greatly in their complexity, whether they are
used to prove mathematical theorems in research or in industry to ensure the security of code.

When executing an automated theorem prover, various algorithms and functions are used
to control the logical closure of the proof, depending on the requirements and available input.
Resolution is a procedure based on the concept of proof of contradiction which is also frequently
used in this context since it is a specific method in the field of automated theorem proving. The basic
idea of the resolution principle is look for contradictions from given logical statements by using a
systematic procedure and thereby to prove the satisfiability or unsatisfiability of a conjecture. In this
thesis I have focused on designing and developing an automated theorem prover based on resolution
or to be more specific a resolution prover. A Resolution Prover (Resolution Theorem Prover) is an
integral tool within computational logic. The primary task of such a prover is to validate or falsify
conjectures within a logical framework by executing automated deductive reasoning processes.
Resolution provers are crucial in various areas, including theorem proving and formal verification.
In theorem proving a resolution prover can assist in automatically proving mathematical theorems
by deriving logical consequences from given inputs, e.g. axioms and hypotheses. This form of
application is of particular importance in both computer science and mathematics, as in these fields
formal proofs ensure the correctness of algorithms and systems.
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1.2 The Rust Programming Language
To implement the resolution prover, my supervisor and I selected the Rust programming language
(Official Website) because it excels in performance, safety and concurrency. Rust’s unique ownership
system guarantees memory safety while maintaining high execution speed, making it an ideal choice
for developing robust and efficient tools for logical reasoning (Santoso2023). Or in this case an
ideal choice for writing a resolution prover.

Rust offers several technical advantages over other languages traditionally used for prover
development. You could say that Rust is an answer to a few well-known problems of other popular
languages such as null pointer dereferencing and memory safety. Rust addresses these issues with
its ownership system, which ensures that memory safety is enforced at compile time (Santoso2023)
without the need for a garbage collector (automatic memory management tool to identify and free
memory resources that are no longer needed). In addition, Rust’s ownership system directly releases
memory that is no longer required. This concept of direct memory release is possible due to the
use of scopes, or more precisely the memory release at the end of a validity range (Klabnik2023)
. This avoids a whole class of common runtime errors. In general, a garbage collector can affect
the entire program despite its useful activities due to the use of additional computing power. The
unpredictable pauses and the computing power required can impair performance and responsiveness.
Rust’s system avoids this problem, resulting in a way more predictable performance, which is critical
for computational tasks that require high efficiency and low latency, such as theorem proving.

Another advantage of Rust would be its concurrency model, supported by its ownership and
borrowing rules which ensures that data races are prevented at compile time (Santoso2023). To be
more specific that the compiler checks and guarantees that there will be no conflicting inquiries and
executions to data from multiple threads, which enhances both safety and performance. This makes
Rust highly efficient for multi-threaded and performance-critical applications.

I have also noticed that the Rust compiler provides exceptionally informative error messages
and warnings. These messages guide developers to fix problems quickly and effectively, which is
especially beneficial for new programmers or those switching from other languages. The compiler
not only identifies errors and warnings, but also offers suggestions on how to fix them, which
optimizes development from my personal experience and also the concrete comparison with the
error messages of other languages I have previously programmed in.

The benefits of Rust go beyond its technical features. The language is especially supported
by an active community of developers who are committed to its continuous improvement. This
community is particularly known for its inclusivity and collaborative spirit, which results directly in
the provision of extensive documentation and strong support for newcomers. ( E.g. the website Learn
Rust which contains more than enough material to learn rust. I also used it to learn this programming
language. What really stood out for me was that it is also possible to solve small programming
tasks interactively in the browser. This has made learning the language quite uncomplicated and
flexible.) Since its establishment in 2021, the Rust Foundation has been crucial in overseeing Rust’s
development and maintenance, (Website Rust Foundation). In addition, Rust benefits from a rapidly
growing ecosystem of libraries and tools, including crates (package manager in rust), that cover
a wide range of programming requests and needs. This extensive ecosystem facilitates enhanced
development and provides reliable, pre-built solutions and libraries for common tasks, making Rust
not only a powerful language, but also an accessible language for developers or people taking their
first steps in software.

https://prev.rust-lang.org/
https://www.rust-lang.org/learn
https://www.rust-lang.org/learn
https://foundation.rust-lang.org/news/2021-02-08-hello-world/
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1.3 Objective of the thesis
The primary goal of this thesis is to develop a Resolution Prover in Rust specifically designed for
handling inputs in first-order logic (FOL). I approached this goal by first developing a resolution
prover for propositional logic inputs. This first step was very helpful in understanding and famil-
iarizing myself with the topic of automated logical reasoning and at the same time learning the
programming language Rust, which was new to me. While propositional logic served as the starting
point, the main focus and ultimate goal of this thesis is the implementation of a resolution prover
that is able to effectively manage and derive conclusions from first-order logical inputs in Rust.
By applying the resolution prover to a specific input, the user can determine whether this input
is satisfiable or unsatisfiable. As an outlook, I also intend to make the resolution prover I wrote
for propositional and first order logic inputs available to the Rust community and all interested
individuals as an open source git repository once it is finalized. My contribution is intended to
support future developments of Resolution Provers in Rust and to promote joint progress in the
field of automated logical reasoning. It is important to note that my resolution prover can only
evaluate a certain type of input. In particular, the FOL inputs, sourced from the TPTP (Thousands
of Problems for Theorem Provers) website, can currently only be processed one specific type. The
exact specifications of the inputs will be explained in a later part of the thesis. Nevertheless, it
seems to me that my resolution prover is an important foundation for the development of further
provers in Rust. By addressing this topic, I hope to improve the capabilities and applications of
Resolution Provers in Rust so that a wide range of inputs can be processed in the future.

1.4 Overview of the structure
In this paper I will first give an overview of the theoretical foundations of propositional logic,
the CNF form, first order logic and the resolution process, depending on the logic system of the
inputs. This is the basis for the explanation of the concrete implementation of the resolution prover,
which will be explained next. Here I differentiate between the resolution prover for propositional
logic inputs and the resolution prover for first order logic inputs and explain the most important
functionalities for both provers. A fairly large section is also dedicated to the implementation of
a CNF converter, which was required for the resolution prover for first order logic. Finally, I will
conclude the implementation of both provers with a detailed description of the resolution algorithm,
emphasizing in particular the input logic-dependent extensions. I will then focus on evaluating the
results using tests and statistics. I will end this work with a conclusion about the implementation
and an outlook with ideas for the further development and optimization of the resolution prover.

2 Theoretical foundations

2.1 Propositional logic and CNF
In the initial phase of my work, I studied propositional logic and its efficient representation in
Conjunctive Normal Form (CNF) thoroughly. Understanding these basic concepts was crucial,
not only for the theoretical foundations, but also for structuring the programming framework and
conceptualize the datastructure of the resolution prover that I developed. Propositional logic, a
branch of logic, deals with propositions and their connections to other propositions. A proposition

https://www.tptp.org/
https://www.tptp.org/
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is essentially a declarative statement that can be uniquely identified as true or false. For example,
the statement ”The current season is summer and the sun is shining” can be true or false depending
on the actual weather conditions and the actual current season. In this example we have two
propositions “the current season is summer” and “the sun is shining” which are connected with an
AND-operator. This field of logic, which works in a binary framework in which each statement
is strictly evaluated according to two possible truth values, true (T) or false (F), also provides a
clear basis for the application of the logical operators described below (Rautenberg2010). With the
help of these operators, such as conjunction, disjunction and negation, we can manipulate the truth
values of propositions in order to construct new propositions from existing ones. Depending on the
specific application of the operators, we can draw logical conclusions (Harrison2009). Propositions
are represented by variables (e.g.P,Q) denoting simple statements. Now I will describe the listed
operators in more detail using examples.

The negation operator reverses the truth value of a given proposition. For instance if the
proposition P is “The current season is summer” then ¬P would be “The current season is not
summer”.

A conjunction, on the other hand, is a linking of statements that uses the AND operator ∧ and
can only have the truth value true if all linked statements also have the truth value true. A simple
example to illustrate this would be, for example, P corresponds to ”I am travelling by train” and Q
corresponds to ”The train WiFi is working”. Assuming that the two statements P and Q are correct,
the conjunction of these statements P∧Q ”I am travelling by train and the train WiFi is working”
would also be true. However, as soon as one part of the statement is no longer true, the conjunction
is also no longer correct. The individual assignments of the truth values of two variables are also
shown in Table 1 in the form of a truth table.

A disjunction is also a linking of statements but whereas to conjunction uses the OR operator
∨. In this case, the composite statement is true if at least one of the individual statements is true. To
stick with the train analogy, let’s consider the following example: Let P represent ”The next train
goes to Berlin,” and let Q represent ”The next train has available seats.” The disjunction of these
statements, P∨Q, means ”Either the next train goes to Berlin, or it has available seats, or both.”
This implies that as long as one of these conditions is met - either the destination is Berlin or there
are seats available- you have a reason to consider taking the train.

P Q ¬P ¬Q P∧Q P∨Q ¬P∧Q ¬Q∨P Q =⇒ P P ⇐⇒ Q
T T F F T T F T T T
T F F T F T F T T F
F T T F F T T F F F
F F T T F F F T T T

Table 1: Truth Table propositional logic

Having covered the basic concepts of negation, conjunction and disjunction it is also important
to understand implication and equivalence.
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An implication can be understand as an if-then relationship between two propositions, e.g. Q =⇒ P
is read as “P implies Q”. The implication is true, if Q is true or if both values are false. That is
because something false can imply something true which makes the whole statement true. Also if
something false implies something false it makes the whole statement true. The only case for an
implication statement to be wrong is if something with the truth value true implies something false.
Then the whole statement is false. An implication can also be represented by AND, OR and NOT
operators, e.g. Q =⇒ P is equivalent to ¬Q∨P. This is really important for converting inputs
which contain implications to a form with only NOT, OR and AND operators.

An equivalence is true if both compared propositions e.g. Q ⇐⇒ P have the same truth
value, so both can be false or both can be true for the whole equivalence statement to be true. The
statement Q ⇐⇒ P can also be understand as Q =⇒ P and P =⇒ Q and those to implications
can be simplified even further to ¬Q∨P and ¬P∨Q.

With keeping this brief introduction to propositional logic in mind I will now go on to
explain the conjunctive normal form. A conjunctive normal form (CNF) is present when there is
a conjunction of one or more clauses, where each clause consists of disjunctions of literals, e.g.
((Q∨P)∧ (Q∨¬P)) is in CNF (Harrison2009). A Literal can be understand as an proposition or
its negation. A CNF can also consist of only one clause with only one literal, e.g. (¬P) is also
CNF because you could interpretate it as a conjunction of disjunctions, which is consistent with the
definition of a CNF. Another special case would be a CNF consisting only of one disjunction, e.g.
(P∨Q). The counterpart to CNF is the Disjunctive Normal Form (DNF) which is a disjunction of
clauses that consists of conjunct literals, e.g. ((Q∧P)∨ (Q∧¬P)). A single clause with a single
Literal can also be interpretated as an disjunction of conjunctions, which is the definition of a
DNF. CNF is a form of representation for propositional logic inputs, because every statement in
propositional logic can be expressed as a CNF. The CNF plays a central role in my resolution prover,
as the resolution algorithm is specially designed to process inputs in CNF. Some of the inputs in my
Resolution Prover are already in CNF format and if not, a CNF converter has been implemented to
convert the inputs into CNF.

2.2 First Order Logic (FOL)
In the last chapter I described the structure of propositional logic which basically only consists
of propositions and the operators NOT, AND, OR, IMPLIES, EQUIVALENT to build statements
more complex structures of the propositions. In propositional logic all propositions or statements
have a clear assigned truth value which can either be false or true. Propositional logic is relatively
limited in its expressive power, as it cannot make any statements about objects relationships to each
other. Furthermore, no quantifiers can be used to make more complex statements(Russell2009).
First-order logic, on the other hand, represents an extension to propositional logic, as it adds
quantifiers, predicates and functions (Graf1996). That is also how first Order Logic makes it
possible to represent the properties of objects and the relationships between different objects in
detail, which is essential for modeling and understanding complex systems. In First Order Logic,
functions are defined as mappings that assign objects to other objects. Predicates in First Order
Logic function as relations or properties of objects and can have different arities, which gives
them the ability to express complex relationships between one or more objects.(Rautenberg2010)
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Similar to propositional logic, first order logic uses logical operators such as AND, OR, NOT,
IMPLIES and EQUIVALENT, which allow logical links between statements to be formulated, but
with the extended ability to go deeper into the structure of objects and their relationships. To better
understand the difference between Propositional Logic and First Order Logic, here is an example of
a statement in First Order Logic:

∀x (Person(x)→∃y (hasJob(x,y)))

The statement simply says that every person x has an occupation y. The universal quantifier is
used to make a statement about all possible instances x of a set. Here, an x is a concrete instance
of a person. The predicate Person(x) is a function that returns true if the object x is actually a
person. The following implication simply connects two statements. The implication is true or false
depending on the assignment of the truth values of the two statements (see table 1). The existential
quantifier is used to indicate the existence of at least one object that fulfills a certain property or
relationship. Here it is used to declare that there is at least one occupation y that person x practises.
This predicate checks whether person x has profession y. It is a relational function that takes two
arguments: a person and an occupation. It returns ”true” if there is a relationship between these
two objects that x has profession y. If you now consider how you could express this FOL statement
with the possibilities of propositional logic, you would quickly realize that this can become very
complicated. First of all, we have to think about how we can represent the statement without using
quantifiers. Since the statement is about all possible instances of a person, we have to formulate a
single statement for each individual person P when using propositional logic structures:

P1→ (J1,1∨ J1,2∨·· ·∨ J1,n)

...

Pm→ (Jm,1∨ Jm,2∨·· ·∨ J1,n)

Here Pm stands for the mth instance of a person and n for the nth job that this person can
have. If we were to use propositional logic instead of FOL to model this situation, there would be
problems with the scalability of the statements in practice. While theoretically one can even make
such a statement for every single person of a considered set and thus dispense with FOL (even if it
is much more complex), there may well be statements that cannot be modeled with propositional
logic because they refer to an infinite set. A simple mathematical example would be ∀x ∃y (y = x2).
This statement says that for all possible numbers x, there is a number y that is the square of x. If we
now consider the set of natural numbers for x and y, then we have an infinite set here. This can no
longer be represented with propositional logic.

2.3 Resolution in logic systems
In the following section, I would like to explain the basics of the resolution algorithm, starting with
a general explanation based on propositional logic inputs and then explaining which changes and
extensions are necessary to apply resolution to first order logic inputs.
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2.3.1 Performing Resolution on propositional logic inputs

The resolution algorithm is about deriving a proof by contradiction (Robinson1965). In general,
the input for the resolution algorithm consists of a certain number of axioms that are valid and a
conjecture that needs to be proved or disproved. In the context of propositional logic, both the
axioms and the conjecture are in a CNF clause form. The resolution algorithm is applied to this
entire clause set, whereby the conjecture is added to the clause set in a negated form before the
resolution algorithm is applied. When applying the resolution, two clauses from the clause set
are resolved with each other. Resolving two clauses is possible if there is a complementary literal
pair in both clauses, i.e. if a literal occurs in the negated form in one clause and in a non-negated
form in the other clause (Bachmair2001). An example of this would be clause1 : (P∨Q) and
clause2 : (¬P∨R), where P and ¬P represent the complementary literal pair. When resolving two
clauses, the complementary literal pair is removed and the remaining contents of the clauses, i.e.
the remaining literals, are merged and form a new clause, the so-called resolvent. To stay with the
example above: Resolving the clauses (P∨Q) and (¬P∨R) would produce the new clause (Q∨R)
as a result. This new clause is now added to the remaining clause set and can now also be used for
other resolving options. This resolving step is often presented as follows (Bachmair2001):

(P∨Q)
(¬P∨R)
(Q∨R)

It is important to note that only one complementary literal pair is removed per resolving step.
With these two clauses (P∨Q) and (¬P∨¬Q), there are two complementary pairs: P, ¬P and Q,
¬Q. However, only one pair may be considered and removed per resolving step. It is therefore
not possible to remove both complementary pairs, which would lead to an empty clause, but the
result of the resolving is either (P∨¬P) or (Q∨¬Q). In principle, each clause can be resolved
(even multiple times) with another clause, provided there is a complementary literal pair. This
process is repeated until no further new resolvings are possible in the clause set or until a so-called
empty clause is found, which represents a contradiction (Robinson1965). An empty clause arises
when two resolving clauses each contain a literal of a complementary pair, e.g. clause1 : (Q)
and clause2 : (¬Q) would lead to an empty clause if these two clauses were resolved, because
as explained above, when two clauses are resolved, the complementary pair is removed and the
remaining clause content is merged. However, there is no remaining clause content here, i.e. no
further literals in either clause, which is why the result here is an empty clause. As soon as an
empty clause is created in the resolution process, the algorithm stops and the result is that the input
is unsatisfiable. If, on the other hand, all possible resolution combinations have been made and
the clause set does not produce an empty clause, i.e. no contradiction, then the input is satisfiable
(Robinson1965). Satisfiable is understood to imply that it is possible to assign truth values to all
variables or literals of a clause set so that all clauses of the formulas become true. This is the case
if no empty clause can be found, as this would represent a contradiction (Russell2009). If, on the
other hand, the resolution algorithm generates an empty clause, then the input is unsatisfiable. This
is to be understood as a clause set being unsatisfiable, as there is no possible truth value assignment
that makes the entire clause set true. An empty clause is created in the resolution process because
all possibilities of assigning truth values to the variables end in a contradiction (Russell2009). This
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means that the original assumptions are inconsistent with the negated conjecture. The resolution
process does not directly assign truth values to individual literals and clauses, but attempts to
uncover structural contradictions. If you now have two clauses (P) and (¬P), then P would have
to be both true and false at the same time in order to make both original clauses true. But this
is not possible, which shows the contradiction at precisely this point. The resolution algorithm
therefore basically simulates the processing of the truth value assignments by gradually resolving
clauses with complementary literal pairs until an empty clause is found or until no further new
resolutions are possible (Robinson1965). If finally no empty clause is found, this means that there
is at least one assignment of the truth values of the literals that makes the entire clause set true.
If there is an empty clause, there is therefore no assignment that would make the entire clause set true.

Example. Application of the resolution algorithm to an input that is satisfiable: The input is in a
CNF form and consists of the clauses:

Clause1 : (P∨Q)

Clause2 : (¬Q∨R)

Clause3 : (¬P∨¬R)

Clauses that are being resolved Result of the resolving process (resolved clause)
1, 2 4 : (P∨R)
2 ,3 5 : (¬P∨¬Q)
1 ,3 6 : (Q∨¬R)
1, 5 7 : (R∨¬R) , 8 : (Q∨¬Q)
4, 5 9 : (R∨¬Q)
1, 9 10 : (P∨R)
3, 4 11 : (P∨¬P), 12 : (R∨¬R)

Table 2: Satisfiable Input Clauses

All possible combinations that can be resolved have been run through. This did not result in an
empty clause, i.e. a contradiction. This input is therefore satisfiable. As each resolved clause is also
added to the clause set, the new clause set is now the following:

((P∨Q),(¬Q∨R),(¬P∨¬R),(P∨R),

((¬P∨¬Q),(Q∨¬R),(R∨¬R),(Q∨¬Q),

((R∨¬Q),(P∨R),(P∨¬P),(R∨¬R)
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The clauses (P∨¬P), (R∨¬R) and (Q∨¬Q) are tautologies, which means that these clauses
are always true, no matter what the truth value assignment of the individual literals is. If the literal P
has the assignment true, then the clause (P∨¬P) is true because of the literal P and because it is a
disjunction, which means that at least one variable must be true for the whole expression to be true.
If now P has the assignment false, then ¬P would be true and therefore the whole expression is true
again (Harrison2009). Strictly speaking, these tautologies do not contain any useful information
regarding the detection of contradictions by means of resolution. For this reason, tautologies that
can arise in the resolution process are often discarded and not added to the entire clause set. This is
because if one were to resolve a tautology, e.g. (P∨¬P) with another clause, e.g. (¬P∨R), then
the second clause would emerge identically from the resolving process, i.e. still (¬P∨R). For the
sake of completeness, I have listed them here anyway, but it is important to understand that they
have no influence on the detection of contradictions.

Example. Application of the resolution algorithm to an input that is unsatisfiable: The input is in
a CNF form and consists of the clauses: 1 : (P∨Q) 2 : (¬P∨Q) 3 : (P∨¬Q) 4 : (¬P∨¬Q) The
table 3 shows the resolution options and the resolution process:

Clauses that are being resolved Result of the resolving process (resolved clause)
1, 2 5 : (Q)
1, 3 6 : (P)
1, 4: 7 : (P∨¬P), 8 : (Q∨¬Q)
4, 5: 9 : (¬P)
6, 9: {} empty clause

Table 3: Unsatisfiable Input Clauses

Not all possible resolving options are shown in this table, as an empty clause was discovered in
the process and the other clauses that could otherwise be resolved no longer have any significance.
The empty clause is created by resolving clauses 6 and 9, i.e. P and ¬P. By applying resolution, it
was determined here that the given input is unsatisfiable for all possible assignments of the literals.

2.3.2 Performing Resolution on first order logic inputs

If you want to use resolution on a first order logic input, there are a few special aspects to be aware of.
The fundamental principle is identical: two clauses can be resolved if there is a complementary literal
pair. If an empty clause occurs during the resolving process, then the given input is unsatisfiable. If,
on the other hand, all resolvents have been formed and no empty clause has been generated, then
the input is satisfiable. However, the first order logic inputs no longer consist of simple literals and
clauses, but can contain very different types, such as functions, terms, quantifiers, predicates, etc.,
which is why it is important to first convert the input into a CNF form (Russell2009). This already
involves many complex steps, for example when dealing with quantifiers, which I will explain in a
later chapter. Let us now assume that the first order logic input is in CNF form. Examples of clauses
are e.g. ( f (X)∨ g(Y )∨¬h(X)) and (NOT f (X)∨¬g(Z)∨ h(skolemconstant(X)). We now have
the predicates f , g and h and their term contents, which varies. If we now resolve these two clauses
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in the same way as before, this would work, for example, with the complementary pair f (X) and
¬ f (x) and the resolvent would be (g(Y )∨¬h(X)∨¬g(Z)∨h(skolemconstant(X)). When selecting
a complementary pair, please note the following: The predicate name must be identical and so must
the content of the term! For example, you could not resolve ¬h(X) and h(skolemconstant(X), as
the content is different here, although the predicate itself would be a complementary pair. This is an
important characteristic in the application of resolution to first order logic inputs. However, there are
also cases in which resolution can still be applied to complementary predicate pairs with different
terms. For this purpose, unification is used. In unification, a variable in the term of a predicate
is substituted by a more suitable content, with an unifier (Robinson1965). For example, the two
clauses above could also be resolved using g(Y ) and ¬g(Z) if the content of ¬g(Z) were replaced
by a Y . After substituting Z with Y both clauses can be resolved and the complementary pair g(Y )
and ¬g(Y ) is removed. Unification can be understood as resolving two clauses by substituting
something in those clauses. A substitution is to be understood as a mapping σ that systematically
replaces variables in terms with other terms. It is used to unify two terms in different clauses, but
with the same predicate designation, so that they appear identical. After applying substitution, a
complementary pair can now be resolved as part of unification (Robinson1965). A substitution σ is
typically represented as a set of pairs {x1/s1,x2/s2, ...,xn/sn} with i = 1, ...,n, where xi is a variable
which is substituted by a variable si. Applying the substitution to a term t is called tσ and means
that each occurrence of xi in t is replaced by si (Robinson1965). However, as soon as a specific
substitution is carried out, it must also be carried out on the entire clause set so that it remains
consistent. With larger input files, this can require a great deal of effort and computing capacity,
which is why such operations must be carefully considered. What must also be taken into account
with unification is that not all complementary predicate pairs can be unified without further ado.
The semantic of these pairs must be compatible. For example, ¬h(X) and h(skolemconstant(X))
could not be unified, as the structure and semantic of the term content is fundamentally. Especially
skolem constants or skolem functions acquire a special treatment to be unified. I have also written
specific functions for this in the implementation of my Resolution Prover. Substitutions must
therefore be type-appropriate so that the semantics of the terms involved are not violated, i.e. the
variables and terms to be substituted must be compatible (Robinson1965). For example, a skolem
function, which can arise in the CNF conversion of first order logic inputs, cannot be replaced by
any variable, as the skolem function represents certain quantifier dependencies and this information
is no longer represented by a substitution with a variable. It must therefore always be checked that
the substitution is permitted and also beneficial in the respective context of the specific application.
Another important point to note with unification is the avoidance of circular substitution, also
known as occur check (Knight1989). It is important to note here that a substitution must not be
circular, which means that it must not contain a definition that would indirectly refer to itself. An
example of this would be the substitution σ = {X/ f (X), f (Y )/Z}, as the substitution of X by f (X)
would result in a loop that would expand X endlessly into f ( f ( f (...) and on and on. I have also
implemented a function for this in my resolution prover. Not let us consider another example to
visualize the unification process: Clauses : (p( f (X),Y )∨q(Y )),(¬p(Z,g(W ))∨ r(Z)) If we want
to resolve those two clauses, we need to find a substitution σ , so that p( f (X),Y ) σ = p(Z,g(W )) σ .
We can resolve those clauses by substituting f (X) = Z and Y = g(W ), so the substitution mapping
can be formal described asσ = {Z/ f (X),Y/g(W )}. After applying the substitution we now have
the clauses: (p( f (X),g(W ))∨q(g(W ))),(¬p( f (X),g(W ))∨ r( f (X))), which can be resolved with
the resolvent q(g(W ))∨ r( f (X)) as result. While the actual core of the resolution process for first
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order logic is identical to the application of resolution for propositional logic, the more complex
structure of the inputs requires the implementation of additional mechanisms such as checking the
term contents and the application of unification, i.e. the substitution and subsequent resolution of
two clauses. Since I have implemented a resolution prover for both propositional logic inputs and
first order logic inputs, the exact differences will be explained in more detail later using pseudo
code.

3 Resolution Prover in Rust

3.1 Software architecture: Overview of program design and structure
For the implementation of my Resolution Prover I used the programming language Rust, ver-
sion 1.72.1. My project was managed with git and can be viewed under the following link
github.com/wrosmus/resolution-prover-in-rust/ As mentioned before, I implemented two reso-
lution provers, first for propositional logic inputs and then for first order logic inputs. In terms of
approach and structure, both provers are quite similar. For both provers, I created a data structure
to represent the input. I have tried to keep the data structure as simple as possible and at the same
time sufficient for all possible cases so as not to complicate the further processes and algorithms
even more. While the data structure in the prover for propositional logic only describes literals,
clauses and CNFs, in the prover for first order logic it is extended by terms, predicates, formula
types, sentence types and formulas, which is consistent with the description of the more complex
structure of first order logic inputs. Both provers have a pest parser, which brings the input files into
a structure defined in the data structure so that the input can finally be processed by the resolution
algorithm. The resolution prover for first order logic inputs also has an additional CNF converter,
which converts the parsed input into a CNF form so that the resolution algorithm can process the
input. The implementation of the resolution algorithm is also somewhat more complex here, as
mechanisms such as unification have been added. When executing the prover for propositional logic,
the command line can be used to choose between various sat (satisfiable) or unsat (unsatisfiable)
input files, which are then read in and executed. With the prover for first order logic inputs, one can
choose between three different inputs, two of which are satisfiable and one unsatisfiable.

3.2 Parser and Grammar: Description of Implementation and challenges
3.2.1 Parser for propositional logic inputs

For the implementation of the parser I used Pest, version 2.7.5. Pest is a parser library in Rust, which
can be used to simplify parsing activities. Based on the Parsing Expression Grammar principle,
parsing rules are defined in the form of a grammar and stored in a separate ”.pest” file. These
defined rules can then be processed by the Pest macro and used accordingly within the parser. There
is a function in the parser that accepts the input file as an input string and parses it using the Pest
grammar. Further functions are then used to iterate over the individual tokens according to the
grammar rules, which are then processed and finally converted into a CNF formula according to the
data structure. I have defined this grammar for the resolution prover with propositional logic inputs
in order to be able to map the input:

https://github.com/wrosmus/resolution-prover-in-rust/
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programm file: dimacs grammar.pest

file = { SOI ~ (comment ~ "\n"*)* ~ problem ~ "\n"* ~

(clause ~ "\n"*)* ~ clause? ~ EOI }

comment = _{ "c" ~ (!"\n" ~ ANY)* ~ "\n" }

problem = _{ "p" ~ ("cnf" | "sat") ~ n ~ m }

clause = { (lit ~ "\n"?)+ ~ "0" }

lit = @{ "-"? ~ !"0" ~ ASCII_DIGIT+ }

n = @{ ASCII_DIGIT+ }

m = @{ ASCII_DIGIT+ }

WHITESPACE = _{ " " }

The input benchmarks used here all have the same structure: Lines with comments start with
a c and are ignored or skipped by the parser. The same applies to lines beginning with a p, as
these represent the problem and the number of CNF clauses in the input file. This is followed by
the clauses actually to be processed, whereby the end of a clause is marked by a ”0”. The parser
processes these rules and outputs a vector ”CNFFormula” at the end, which contains the parsed
CNF formulas as a closed list. This vector is then passed to the resolution algorithm.

Example. Here is an illustration using the satisfiable input xor.cnf which is formatted as a dimacs
input file:

c sat

p cnf 2 2

1 2 0

-1 -2 0

After parsing, the clauses from the input file are in the following structure:
Clauseliterals : [Positive(”1”),Positive(”2”)]
Clauseliterals : [Negative(”1”),Negative(”2”)]

3.2.2 Parser for first order logic inputs

While the implementation of a parser for propositional logic inputs was comparatively less complex,
the creation of a parser for first order logic inputs was much more demanding. Here, files from the
TPTP website were used as input. The formulas to be parsed were no longer just mapped as one
clause per line, but consisted of multi-line nested formulas with operators, formula names, sentence
types, etc., which meant that the parser had to be fundamentally rebuilt. The frame of the input file is
very similar to the previous definition, because here too there is a ”Start of input” followed by a part
containing either ”content” or a ”comment” followed by the end of the file, ”EOI”. The comments
can also be neglected here. The formulas to be parsed now follow the pattern that they start with an
” f o f ” (first order formula), followed by a formula name and the type of formula (formula role), for
example an axiom or the conjecture. This is followed by the actual formula, which can be nested
as required. Some formulas are also preceded by existential or universal quantifiers, whereby the
quantifiers can also occur within or between expressions. The formulas can then consist of single
predicates or more complex nesting with implications, equivalences and other operators. At this
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point I would like to point out that the defined grammar can only be used for a subset of input files
on the TPTP website, i.e. only those that follow the exact structure defined in the grammar. For
other inputs, further modifications must be made here. Here is an excerpt from the grammar for first
order logic inputs, which describes the formulas:

fof_formula = { "fof" ~ "(" ~ identifier ~ "," ~ formula_role ~ "," ~

(WHITESPACE | NEWLINE)* ~ formula ~ ")." }

A formula, on the other hand, is defined as follows:

formula = { quantified_formula | atomic_formula | negation ~ formula }

quantified_formula = { quantifier ~ "[" ~ variable_list ~ "]" ~

":" ~ (WHITESPACE | NEWLINE)* ~ operation }

operation = { equality | inequality }

atomic_formula = { predicate ~ "(" ~ term ~ ("," ~ term)* ~ ")" }

predicate = { letters ~ (letters | numbers | "_")* }

A term can in turn be a variable, a function or a constant. The complete grammar definition is even
more complex and would go beyond the context here. This can be found in my code in any case.
Nevertheless, I wanted to show here roughly how quickly the complexity of the inputs has increased,
with which the resolution prover for first order logic inputs now has to work. The parser written for
this basically works in the same way as with the propositional logic inputs, but here the handling
of the individual grammar rules is much more complex. There were therefore numerous problems
with the implementation, which could not be completely solved until the end. In particular, there
were discrepancies between the application of the defined grammar in the online pest editor pest.rs
and between the framework of the resolution prover. After numerous tests and restructurings were
carried out in the parser, but without solving the problem, I decided to exclude the parser here and
to convert the input files manually (without parser) into the format predefined in the data structure.
This was probably not an elegant solution, but due to the consistent and comparatively short input
files it was also not a complicated interim solution and finally I wanted to concentrate on the main
task, the design of a resolution algorithm. The further development and parser for first order logic
inputs is therefore definitely considered as future work. The input files were then put into this
structure by me (as they would have been by the parser):

ParsedInput {

clauses: Vec::new(),

types: Vec::new(),

sentences,

}

The individual sentences were then presented in this structure:

pub struct Sentence {

pub sentence_type: SentenceType,

pub name: String,

pub formula: Formula,

}

http://pest.rs
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Example. Visualization of the parsing structure of the first formula of the input file SYN055+1.
Representation in the input file:

fof(pel25_1,axiom,

? [X] : big_p(X) ).

Parsed Structure:

Sentence {

sentence_type: SentenceType::Axiom,

name: "pel25_1".to_string(),

formula: Formula::Quantified(

Quantifier::Exists,

vec!["X".to_string()],

Box::new(Formula::Predicate(Predicate {

name: "big_p".to_string(),

arity: 1,

terms: vec![Term::Variable("X".to_string())],

})),

),

}

All the ”parsed” input files can also be found in the cnf converter.rs file. The input files are processed
there in the ”parsed” structure in order to generate CNF clauses.

3.3 Conversion to CNF
For the resolution prover, which processes first order logic inputs, I also had to implement a CNF
converter, as the parsed inputs could not be used for the resolution algorithm. The resolution
algorithm is designed to process CNF clause inputs. To convert first order logic formulas into a
CNF form, I implemented the following steps: (Russell2009)

1. Standardizing variables

2. Eliminate implications and equivalences

3. Convert formula into a negation normal form (NNF)

4. Convert formula into a prenex normal form (PNF)

5. Skolemization

6. Final conversion to CNF

I would now like to explain these six steps in more detail by the use of pseudo code descriptions.
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3.3.1 Standardizing variables

The first function called is rename variable(). The corresponding pseudo code can be found
in: ”Algorithm 1 Clean Formula” and ”Algorithm 2 Rename a Variable”. This is required if
variables have to be renamed within an expression which could lead to conflicts in the further
course of processing and interpretation (Russell2009). A simple example here would be the
following: ∀x ∃y (P(x)∧∀x (Q(x,y)∧R(y))) This formula has a nested quantifier ∀x, which is
used within another quantifier ∀x with the same variable name. This could lead to confusion,
as the inner variable x hides the outer variable x. These scope conflicts are recognized by the
clean formula() function and the variables in question are renamed using the rename variable()
function so that they can be distinguished. In this example, a clear renaming could look as follows:
∀x ∃y (P(x)∧∀x2 (Q(x2,y)∧R(y))). Here, a 2-ending is added to the nested universal quantifier
expression for the relevant variable X , which makes this variable distinguishable. The use of these
two functions ensures that there are no name conflicts within a formula.

3.3.2 Eliminate implications and equivalences

After the formulas have been checked for possible name conflicts, the next step is to resolve im-
plications and equivalences (Russell2009), if they exist. The corresponding pseudo code can be
found in: ”Algorithm 1 Eliminate Implications and Equivalences”. An equivalence expression
Q(Y )⇔ P(Y ) can also be expressed as (Q(Y )→ P(Y ))∧ (P(Y )→ Q(Y )), i.e. as two implications
connected by an AND. An implication P(X)→ Q(X), on the other hand, can also be represented
as ¬P(X)∨Q(X). In order to bring a given input into CNF, it is essential to resolve implications
and equivalences and represent them with the NOT, AND, OR operators. The function elimi-
nate implications and equivalences() ensures this at this point. Equivalences are first converted
into implications and implications, e.g. P(X)→ Q(X) are converted into the form ¬P(X)∨Q(X),
i.e. into a disjunction in which the left literal of the previous implication expression (here P(X)) is
negated. To guarantee the entire conversion, the function is called in a recursive way and applied to
the entire nested structure of the formula. As quantifiers may also be present at this point in the CNF
conversion, this function has been designed so that quantified expressions are also handled correctly.
This guarantees that the same logic is also applied recursively to the content, i.e. the scope, of
the corresponding quantifier during the conversion. The eliminate implications and equivalences
function is executed within a loop until no more changes are made to the formula, which is the case
if there are no more implications or equivalences.
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Algorithm 1 Eliminate Implications and Equivalences
Require: A formula formula
Ensure: Returns a formula where implications and equivalences are resolved into NOT, AND, OR

current f ormula← f ormula.clone()
loop

new f ormula← MATCH(current f ormula) current f ormula Implies(lhs, rhs)
neg lhs← Not(lhs.clone()) ▷ Convert implication to disjunction
new rhs← rhs.clone()
return Or([neg lhs,new rhs])
Iff(lhs, rhs)

lhs implies rhs← Implies(lhs.clone(),rhs.clone())
rhs implies lhs← Implies(rhs.clone(), lhs.clone())
return And([lhs implies rhs,rhs implies lhs]) ▷ Convert equivalence into two implications
Not(sub formula)

return Not(ELIMINATEIMPLICATIONSANDEQUIVALENCES(sub f ormula))
And(sub formulas)

new sub f ormulas←Map(ELIMINATEIMPLICATIONSANDEQUIVALENCES,sub f ormulas)
return And(new sub f ormulas)
Or(sub formulas)

new sub f ormulas←Map(ELIMINATEIMPLICATIONSANDEQUIVALENCES,sub f ormulas)
return Or(new sub f ormulas)
Quantified(quantifier, vars, sub formula) ▷ Apply recursively within quantifiers

new sub f ormula← ELIMINATEIMPLICATIONSANDEQUIVALENCES(sub f ormula)
return Quantified(quanti f ier,vars,new sub f ormula)
return current f ormula.clone()
if new f ormula == current f ormula then

break
end if
current f ormula← new f ormula

end loop
return current f ormula

3.3.3 Converting formula into Negation Normal Form (NNF)

After ensuring that all implications and equivalences have been resolved into expressions that
only contain the operators AND, OR, NOT, the formula is now converted into a negation normal
form (Russell2009). The corresponding pseudo code can be found in: ”Algorithm 2 Convert to
Negation Normal Form (NNF)” and ”Algorithm 3 Process Negation to achieve Negation Normal
Form”.The NOT operators ”¬” are pulled into the expression as far as possible until they are directly
in front of an elementary logical expression that no longer contains nested AND/OR structures,
for example a predicate P(X)(Harrison2009). It should be noted that when applying negation to
parenthesized expressions, the operators are reversed due to the ”pushing in”, for example this
expression ¬(P(X)∨ (Q(X)) would look like this in the negation normal form: (¬P(X)∧¬Q(X)),
as the De Morgan laws are applied here. Here, by applying the negation to the parenthesized
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expression, the OR operator is converted into an AND operator, which also applies analogously
to the application of a negation to a parenthesized AND expression, which would then change
into an OR expression. This process of pushing negation inward is the central component of the
formation of a negation normal form and is carried out by applying the De Morgan laws to the
formula. The De Morgan laws describe exactly this process of reversing the operators in the case of
a negation(Harrison2009). Formally speaking, the De Morgan laws can be described as follows
(Harrison2009): The negation of a conjunction of two statements is equivalent to the disjunction of
the negations of these statements: ¬(P(X)∧Q(X))≡ ¬P(X)∨¬Q(X). Similarly, the negation of a
disjunction of two statements is equivalent to the conjunction of the negations of these statements:
¬(P(X)∨Q(X)) ≡ ¬P(X)∧¬Q(X). The application of De Morgan’s laws applies not only to
variables and operators, but also to quantifiers (Russell2009). For example, the negation of an
existential quantifier ¬(∃x P(x)) leads to ∀x ¬P(x) and vice versa for universal quantifiers. These
mathematical principles are performed recursively by the functions to negation normal form() and
process negation() to ensure that each subformula of a more complex formula is handled correctly
with regard to negation. After using the functions to negation normal form() and process negation()
to form an NNF, the function is fully negation normalized() is also used to check whether all
negations have actually been sufficiently included in the nested expressions or whether there are any
underlying expressions that contain AND/OR operators.

Algorithm 2 Convert to Negation Normal Form (NNF)
Require: A formula formula
Ensure: Returns the formula in negation normal form

f ormula Not(sub formula)
return PROCESSNEGATION(sel f ,sub f ormula) ▷ Process negations recursively

And(formulas)
nn f f ormulas← MAP(sel f ,ToNegationNormalForm, f ormulas)
return And(nn f f ormulas) ▷ Apply NNF to each subformula in conjunction

Or(formulas)
nn f f ormulas← MAP(sel f ,ToNegationNormalForm, f ormulas)
return Or(nn f f ormulas) ▷ Apply NNF to each subformula in disjunction

Quantified(quantifier, vars, sub formula)
nn f sub f ormula← TONEGATIONNORMALFORM(sel f ,sub f ormula)
return Quantified(quanti f ier,vars,nn f sub f ormula) ▷ Handle quantifiers recursively
return f ormula
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Algorithm 3 Process Negation to achieve Negation Normal Form
Require: A formula formula
Ensure: Returns the formula with negation processed according to De Morgan’s laws

f ormula Not(inner)
return TONEGATIONNORMALFORM(sel f , inner) ▷ Eliminate double negation

And(formulas)
negated f ormulas← MAP(sel f ,ToNegationNormalForm,Map(Not, f ormulas))
return Or(negated f ormulas) ▷ Apply De Morgan’s laws: ¬(P∧Q)≡ ¬P∨¬Q

Or(formulas)
negated f ormulas← MAP(sel f ,ToNegationNormalForm,Map(Not, f ormulas))
return And(negated f ormulas) ▷ Apply De Morgan’s laws: ¬(P∨Q)≡ ¬P∧¬Q

Quantified(quantifier, vars, sub formula)
new quanti f ier← INVERTQUANTIFIER(quanti f ier)
negated sub f ormula← TONEGATIONNORMALFORM(Not(sub formula))
return Quantified(new quanti f ier,vars,negated sub f ormula)

▷ Invert quantifier and apply negation inside
return Not( f ormula) ▷ Base case: Negate simple expressions directly

3.3.4 Converting Formula into Prenex Normal Form (PNF)

The next transformation section deals with creating prenex forms of the formulas (Kroetzsch2017).
The prenex normal form (PNF) is a form of representation of formulas in which all quanti-
fiers ∃, ∀ are moved to the beginning of the formula. The main process of PNF formation
takes place here in the function to prenex normal form(), which uses the auxiliary functions
extract and collect quantifiers() and apply collected quantifiers() to control the extraction and
shifting of the quantifiers. As the scope uniqueness of the quantifiers was ensured in the first step
by possibly renaming variables, this should continue to be ensured at this point by moving the
quantifiers. The quantifiers are extracted by recursively iterating through all subformulas. An
example of the formation of the PNF would be the following: Let (∀x P(x))∧∀y (¬Q(y)∨R(y))
be a formula in NNF. After extracting and shifting the quantifiers, this formula would look like
this in PNF: ∀x ∀y ((P(x))∧ (¬Q(y)∨R(y))). The step of forming the prenex normal form is very
important to prepare the formulas for the skolemization process, which is explained in the next
section.

3.3.5 Skolemization

Now we have the formulas in a prenex normal form, which also contains the negation normal form.
However, the PNF still contains quantifiers that cannot be handled by the resolution algorithm.
Therefore, it must now be ensured that the quantifiers can be removed without changing the
semantics of the expressions. This process is called skolemization. In particular, this involves
eliminating existential quantifiers by generating a unique Skolem constant or a skolem function for
each variable that is bound by an existential quantifier (Russell2009). The difference in the use
of a skolem constant or a skolem function is whether an existential quantifier has no surrounding
universal quantifiers or whether it does. If an existential quantifier has no surrounding universal
quantifiers, then a unique skolem constant representing the statement of the existential quantifier can
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be introduced quite simply and the quantifier can be removed. However, if surrounding universal
quantifiers are present within the skolemization of an existential quantifier, then a skolem function
must be generated which indicates this dependency and whose arguments are determined by the
variables of the universal quantifiers. If there are only universal quantifiers in the formulas that are
not in the scope of influence of existential quantifiers, then they remain during the skolemization
and are deleted afterwards since they can be ignored during the skolemization process if they
are not followed by existential quantifiers. Let us now look at the following example to explain
skolemization in more detail:

∃y (P(x)∧¬Q(y))

Here, there is only the existential quantifier ∃y and no preceding universal quantifier, which means
that the introduction of a skolem constant is sufficient to eliminate the existential quantifier. This
is done by replacing the y in ¬Q(y) with a unique skolem constant, for example ”c”. After
skolemization, the formula would therefore look as follows: P(x)∧¬Q(c). Let us now look at this
formula: ∀x ∃y (P(x)∧Q(y,x)). Here there is an existential quantifier that depends on a preceding
universal quantifier. Therefore, in the context of skolemization, the existential quantifier ∃y must
be represented by a skolem function, which represents the dependence of the existential quantifier
on the all quantifiers. Here, the variable of the function is determined by the variable of the
universal quantifier. We therefore replace y with f (x) here. The skolemized formula then finally
reads: ∀x (P(x)∧Q( f (x),x)), whereby the universal quantifier can then be removed in the next step
without having to carry out special skolemization steps. Skolemization is therefore specifically
about removing existential quantifiers. If, on the other hand, it is a matter of removing an all
quantifier, then this is possible without further ado as long as it does not lie within the sphere of
influence of an existential quantifier. This is because an universal quantifier basically means that a
statement applies to all individuals in a formula. Since we ensure that each clause is true regardless
of the specific binding of a variable represented by an universal quantifier when forming CNF
formulas, the universal quantifier can be omitted here, since the statement made by the universal
quantifier is true for all instances of the variable anyway. The corresponding pseudo code can be
found in: ”Algorithm 4 Transform to Skolem Normal Form”.
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Algorithm 4 Transform to Skolem Normal Form
Require: A formula formula, set of active quantifiers active quantifiers
Ensure: Returns the formula in Skolem normal form

f ormula Quantified(Exists, vars, sub formula)
skolem terms← MAP(vars, GenerateSkolemTerm, active quantifiers)
skolemized f ormula← REPLACEVARSWITHTERMS(sub formula, vars, skolem terms)
return TOSKOLEMNORMALFORM(skolemized f ormula,active quanti f iers)

▷ Replace existential quantifiers with Skolem terms
Quantified(ForAll, vars, sub formula)

new active quanti f iers← active quanti f iers∪ vars
result← TOSKOLEMNORMALFORM(sub formula, new active quantifiers)
return Quantified(ForAll,vars,result) ▷ Keep universal quantifiers, update active set

And(formulas) — Or(formulas)
processed f ormulas← MAP(formulas, ToSkolemNormalForm, active quantifiers)
return And/Or(processed f ormulas) ▷ Apply transformation recursively to subformulas

Not(sub formula)
processed f ormula← TOSKOLEMNORMALFORM(sub formula, active quantifiers)
return Not(processed f ormula)
return f ormula ▷ Literals and base cases are unchanged

3.3.6 Final Conversion into CNF

The final step of the CNF conversion process is to convert the skolemized formulas into a CNF form.
Before executing this step, all remaining universal quantifiers are removed (Russell2009). We then
have a quantifier-free formula, which is now examined for its structure, i.e. the distribution of OR or
AND operators. For this purpose, the function recognize structure() was first implemented, which
analyzes the current structure of the skolemized formula (Corresponding pseudo code: Algorithm 5
Recognize Structure and Convert to CNF). In some cases, a CNF already exists here and the CNF
conversion process is successfully completed. However, it is also possible that a DNF or another
mixed form is present here. If a DNF is present, a conversion to CNF can be ensured quite simply
by using reverse distribution (Kroetzsch2017). The dnf to cnf() function is called for this purpose.
The corresponding pseudo code can be found in: ”Algorithm 6 Convert DNF to CNF”, ”Algorithm
7 Apply Distributive Law” and ”Algorithm 8 Apply Reverse Distributive Law”. Consider the
following example:
Clause in DNF: (P(X)∧Q(X))∨ (R(X)∧S(X))
The distributive law is defined as follows:

A∨ (B∧C) = (A∨B)∧ (A∨C)

If we now consider
A = P(X)∧Q(X),B = R(X),C = S(X)

with
(P(X)∧Q(X))∨ (R(X)∧S(X)) = A∨ (B∧C),
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then the distributive law can be applied here as follows:
First distribute A over (B∧C): (A∨ (B∧C)) = (A∨B)∧ (A∨C).
Since A = P(X)∧Q(X), B = R(X) and C = S(X), one distributes P(X)∧Q(X) over (R(X)∧S(X)):

(P(X)∧Q(X))∨ (R(X)∧S(X)) = ((P(X)∧Q(X))veeR(X))∧ ((P(X)∧Q(X))∨S(X))

We now transform this expression further according to the distribution and get the following
CNF form as a result:

(P(X)∨R(X))∧ (Q(X)∨R(X))∧ (P(X)∨S(X))∧ (Q(X)∨S(X))

However, it is also possible that there is a more complex nested form which is neither in CNF
nor in DNF. In this case, the much more complex apply distributive law function() was developed,
which first analyzes individual subformulas and executes the corresponding distribution or reverse
distribution function. With comparatively small inputs, the application of the distribution can be
used in a resource-saving manner, but as soon as the formulas become more complex and nested,
the complexity of the distribution can increase very quickly, which means that this approach is very
inefficient. The Tseytin transformation could be used for this instead, which I will briefly touch
on later. Now that all the steps for creating CNF formulas have been completed and the formula is
finally available in CNF, there is one last check for the presence of tautologies. A tautology in a
clause means that this clause is always true, regardless of the assignment of the truth values for the
literals in this clause. An example of a tautology would be (P∨¬P). This clause is always true
and therefore has no influence on the finding of empty clauses in the resolution process. In order to
reduce the number of clauses before the resolution process without losing semantics, tautologies
that may have been generated during the CNF conversion process are therefore removed at this
point.

Algorithm 5 Recognize Structure and Convert to CNF
Require: A formula formula
Ensure: Returns the formula in CNF form

if ISCNF(formula) then
print ”Formula is already in CNF”
return f ormula.clone()

else if ISDNF(formula) then
print ”Formula is a pure DNF. Converting using distribution.”
return DNFTOCNF(formula) ▷ Convert DNF to CNF using distributive laws

else
print ”Formula is neither pure CNF nor DNF, applying special distribution.”
return APPLYDISTRIBUTIVELAW(formula)

▷ Apply complex distribution methods to convert to CNF
end if
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Algorithm 6 Convert DNF to CNF
Require: A formula formula
Ensure: Returns the formula converted from DNF to CNF

if ISOR(formula) then ▷ Check if the formula is in DNF (OR of ANDs)
combined← [ ] ▷ Initialize an empty list to store combinations
for each dis junct in f ormula do

if ISAND(disjunct) then ▷ Check if the disjunct is an AND formula
new combined← [ ] ▷ Initialize a new list for this round of combinations
for each existing clause in combined do

for each con junct in dis junct do
new clause← existingclause+[con junct]

▷ Combine existing clauses with current conjunct
new combined.append(new clause)

▷ Add the new clause to the list of combined clauses
end for

end for
combined← newcombined ▷ Update the combined list with the newly combined

clauses
else

for each clause in combined do
clause.append(dis junct) ▷ Add the disjunct to each existing clause

end for
end if

end for
cn f f ormula← MAP(Formula::Or, combined)
return Formula::And(cn f f ormula) ▷ Return the CNF formula

end if
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Algorithm 7 Apply Distributive Law
Require: A formula formula
Ensure: Returns the formula with applied distributive law

if ISOR(formula) then ▷ Check if the top-level operator is OR
(and f ormulas,other f ormulas)← PARTITION(formula, Formula::And) ▷ Separate AND

formulas from others
if and f ormulas.is empty() or other f ormulas.is empty() then ▷ Check if one of the lists is

empty
return SIMPLIFYORCLAUSES(formula) ▷ Simplify if no distribution is possible

end if
distributed← DISTRIBUTEOROVERAND(and f ormulas, other f ormulas) ▷ Distribute

OR over AND if possible
return APPLYDISTRIBUTIVELAW(distributed) ▷ Recursively apply distributive law to

result
else if ISAND(formula) then ▷ Check if the top-level operator is AND

results← MAP(ApplyDistributiveLaw, formula)
▷ Apply distributive law to each sub-formula

return SIMPLIFYANDCLAUSES(results)
▷ Simplify the results of the distribution

else
return f ormula.clone() ▷ Return the formula unchanged if it’s neither AND nor OR

end if

Algorithm 8 Apply Reverse Distributive Law
Require: A formula formula
Ensure: Returns the formula with applied reverse distributive law

and lists← COLLECTANDLISTS(formula)
▷ Gather lists of AND sub-formulas from the main formula

if and lists.is empty() then ▷ Check if there are no AND sub-formulas
return Formula::Or( f ormula.to vec())

▷ Return the formula as an OR of its components if no ANDs are found
end if
cartesian product← CARTESIANPRODUCT(and lists)

▷ Compute the cartesian product of the AND lists to form new OR formulas
new sub f ormulas← MAP(Formula::Or, cartesian product)

▷ Convert each product into an OR formula
return SIMPLIFYANDCLAUSES(new sub f ormulas) ▷ Simplify with commutative law

3.3.7 Example for converting a first order logic input into CNF

Now that I have explained the roughly divided six transformation steps for CNF conversion, I would
like to explain this using a concrete example, which I also use as input in the Resolution Prover.
This example is the third formula of the input file SYN056+1:
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fof(pel26,conjecture,

( ! [X] :

( big_p(X)

=> big_r(X) )

<=> ! [Y] :

( big_q(Y)

=> big_s(Y) ) ) ).

This formula is first passed to the CNF converter in the following structure:

"Iff(Quantified(ForAll, ["X"], Implies(Predicate

(Predicate { name: "big_p", arity: 1, terms: [Variable("X")] }),

Predicate(Predicate { name: "big_r", arity: 1, terms: [Variable("X")] }))),

Quantified(ForAll, ["Y"], Implies(Predicate

(Predicate { name: "big_q", arity: 1, terms: [Variable("Y")] }),

Predicate(Predicate { name: "big_s", arity: 1, terms: [Variable("Y")] }))))".

The sentence type is then analyzed, which in this example is the conjecture. In the resolution, the
conjecture is the assertion that is checked for correctness by attempting to show a contradiction.
The conjecture is therefore added to the rest of the clause set (often axioms) in negated form. This
is also the next step performed by the CNF converter, which is why the formula in the next step is
as follows:

Negated conjecture:

Not(Iff(Quantified(ForAll, ["X"],

Implies(Predicate(Predicate { name: "big_p", arity: 1,

terms: [Variable("X")] }),

Predicate(Predicate { name: "big_r", arity: 1, terms: [Variable("X")] }))),

Quantified(ForAll, ["Y"], Implies(Predicate

(Predicate { name: "big_q", arity: 1, terms: [Variable("Y")] }),

Predicate(Predicate { name: "big_s", arity: 1, terms: [Variable("Y")] })))))

The six transformation steps are now used. First, the clean formula function is used to check whether
there is a need to rename variables if they would lead to conflicts. This is not the case here, which is
why the negated conjecture is passed on to the next function eliminate implications and equivalences,
in which the implications and equivalences are resolved. There are a total of two implication expres-
sions here, which are set to be equivalent to each other. The breaking down of the implications and
equivalences using AND, OR, NOT operators finally converts the formula into the following:

Without implications and equivalences:

Not(And([Or([Not(Quantified(ForAll, ["X"],

Or([Not(Predicate(Predicate { name: "big_p", arity: 1,

terms: [Variable("X")] })),

Predicate(Predicate { name: "big_r", arity: 1,



25

terms: [Variable("X")] })))),

Quantified(ForAll, ["Y"], Or([Not(Predicate

(Predicate { name: "big_q", arity: 1, terms: [Variable("Y")] })),

Predicate(Predicate { name: "big_s", arity: 1,

terms: [Variable("Y")] }))])),

Or([Not(Quantified(ForAll, ["Y"], Or([Not(Predicate

(Predicate { name: "big_q", arity: 1, terms: [Variable("Y")] })),

Predicate(Predicate { name: "big_s", arity: 1,

terms: [Variable("Y")] })]))),

Quantified(ForAll, ["X"], Or([Not(Predicate(Predicate

{ name: "big_p", arity: 1, terms: [Variable("X")] })),

Predicate(Predicate { name: "big_r", arity: 1,

terms: [Variable("X")] }))))))))))

Once this step has been completed, the formula must now be converted into a negation normal form,
i.e. the negations are drawn into the bracketed expressions and applied to the literals, quantifiers
and operators. This is quite a challenge for this function, as it is currently very complex and nested.
Nevertheless, the algorithm can generate a correct NNF using a recursive application of the pushing
negation inwards mechanism, which now looks like this:

Negation Normal Form:

Or([And([Quantified(ForAll, ["X"], Or([Not(Predicate

(Predicate { name: "big_p", arity: 1,

terms: [Variable("X")] })),

Predicate(Predicate { name: "big_r", arity: 1,

terms: [Variable("X")] })])),

Quantified(Exists, ["Y"], And([Predicate

(Predicate { name: "big_q", arity: 1,

terms: [Variable("Y")] }),

Not(Predicate(Predicate { name: "big_s", arity: 1,

terms: [Variable("Y")] }))))]),

And([Quantified(ForAll, ["Y"], Or([Not(Predicate

(Predicate { name: "big_q", arity: 1,

terms: [Variable("Y")] })),

Predicate(Predicate { name: "big_s", arity: 1,

terms: [Variable("Y")] })])),

Quantified(Exists, ["X"], And([Predicate

(Predicate { name: "big_p", arity: 1,

terms: [Variable("X")] }),

Not(Predicate(Predicate { name: "big_r", arity: 1,

terms: [Variable("X")] })))))]))).

In the next step, the prenex normal form (PNF) is formed, i.e. the quantifiers are moved to the
beginning of the expression, which generates this formula:

Prenex Normal Form:
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Quantified(Exists, ["X"], Quantified(ForAll, ["Y"],

Quantified(Exists, ["Y"], Quantified(ForAll, ["X"],

Or([And([Or([Not(Predicate

(Predicate { name: "big_p", arity: 1,

terms: [Variable("X")] })),

Predicate(Predicate { name: "big_r", arity: 1,

terms: [Variable("X")] })]),

And([Predicate(Predicate { name: "big_q", arity: 1,

terms: [Variable("Y")] }),

Not(Predicate(Predicate { name: "big_s", arity: 1,

terms: [Variable("Y")] }))])]),

And([Or([Not(Predicate(Predicate { name: "big_q", arity: 1,

terms: [Variable("Y")] })),

Predicate(Predicate { name: "big_s", arity: 1,

terms: [Variable("Y")] })]),

And([Predicate(Predicate { name: "big_p", arity: 1,

terms: [Variable("X")] }),

Not(Predicate(Predicate { name: "big_r", arity: 1, terms:

[Variable("X")] }))])])])))))

Afterwards the formula is then skolemized in PNF. During skolemization, the existential quantifiers
are first replaced by a skolem constant or a skolem function, depending on whether the existential
quantifier is in the scope of an universal quantifier. After the replacement the existential quantifiers
are deleted from the formula. The first existential quantifier ”Exists, [”X”]” is not in the scope of an
universal quantifier, which is why a skolem constant is used here for all occurrences of the variable
X . This skolem constant is unique and is designated by the function as skolem constant 2, whereby
the ending 2 guarantees the uniqueness here, as other skolem constants have a different ending.
After the skolem constant has been used for all occurrences of the variable X , the corresponding
existence quantifier is removed. The next quantifiers are then considered. This is followed by an
universal quantifier, which does not require skolemization and is therefore skipped but not deleted.
This is followed by another existential quantifier ”Exists, [”Y”]”, which is in the scope of the
previous universal quantifier ”ForAll, [”Y”]”. Therefore, a skolem function must be generated here
as part of the skolemization, which represents the dependency of the previous all quantifier. This is
done by creating a skolem function, in this case skolem function 3 (here too, the ending ensures
the uniqueness of the created function) and inserting it into the corresponding terms that currently
contain the variable Y . The Y then becomes the argument of the skolem function. Since this
formula now only contains universal quantifiers and all existential quantifiers have been successfully
skolemized, the skolemization process is complete at this point. In the next step, the remaining
universal quantifiers are removed, which leads to this quantifier-free formula:

Quantifier-Free-Formula:

Or([And([Or([Not(Predicate(Predicate { name: "big_p", arity: 1,

terms: [Constant("skolem_constant_2")] })),

Predicate(Predicate { name: "big_r", arity: 1,
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terms: [Constant("skolem_constant_2")] })]),

And([Predicate(Predicate { name: "big_q", arity: 1,

terms: [Function { name: "skolem_function_3", arity: 1,

args: [Variable("Y")] }] }),

Not(Predicate(Predicate { name: "big_s", arity: 1,

terms: [Function { name: "skolem_function_3", arity: 1, args:

[Variable("Y")] }] }))])]),

And([Or([Not(Predicate(Predicate { name: "big_q", arity: 1,

terms: [Function { name: "skolem_function_3", arity: 1, args:

[Variable("Y")] }] })),

Predicate(Predicate { name: "big_s", arity: 1,

terms: [Function { name: "skolem_function_3", arity: 1, args:

[Variable("Y")] }] })]),

And([Predicate(Predicate { name: "big_p", arity: 1,

terms: [Constant("skolem_constant_2")] }),

Not(Predicate(Predicate { name: "big_r", arity: 1,

terms: [Constant("skolem_constant_2")] }))])])])

The actual CNF form is then created in the last step of the conversion. This is done by means of the
distribution, which is quite complicated for larger and more complex formulas, such as the formula
we have here. I will now try to break down all the steps as simply as possible: First of all, it is
established here that the formula in question is neither already in CNF nor in DNF. The formula
is therefore broken down into sub-formulas and combined using the distributive laws in such a
way that a CNF form is created. This part here is processed using the distributive law (function
apply distributive law()):

Applying distributive law to formula:

Or([And([Or([Not(Predicate(Predicate { name: "big_p", arity: 1,

terms: [Constant("skolem_con2")] })]), And([Predicate

(Predicate { name: "big_q", arity: 1,

terms: [Function { name: "skolem_function_3", arity: 1,

args: [Variolem_function_3", arity: 1, args: [Variable("Y")] }] }))])]),

And([Or([Not(Predicate(Predicate { name: "big_q", arity: 1,

terms: [ { name: "big_s", arity: 1,

terms: [Function { name: "skolem_function_3", arity: 1,

args: [Variable("Y")] }] })]),

And([Predicate(dicate { name: "big_r", arity: 1,

terms: [Constant("skolem_constant_2")] }))])])])

The other part of the formula is processed using the function function reverse distributive law().
For the clever combination of the individual expressions, the Cartesian product must also be formed
here. These processes are now repeated as often as necessary until finally a CNF form is available
which contains the following clauses:

Converted CNF Formula:
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Clause 1: { ~big_p(skolem_constant_2), big_r(skolem_constant_2),

~big_q(skolem_function_3(?Y)), big_s(skolem_function_3(?Y)) }

Clause 2: { big_p(skolem_constant_2), ~big_s(skolem_function_3(?Y)) }

Clause 3: { ~big_r(skolem_constant_2), big_q(skolem_function_3(?Y)) }

Clause 4: { ~big_r(skolem_constant_2), ~big_s(skolem_function_3(?Y)) }

Clause 5: { big_p(skolem_constant_2), big_q(skolem_function_3(?Y)) }

The CNF conversion process is now complete and the generated clauses can be passed to the
resolution algorithm together with the remaining clauses of the input.

3.4 Resolution algorithm
3.4.1 Implementation for propositional logic inputs

As already explained, I first programmed a resolution prover for propositional logic inputs as part
of this bachelor thesis. The input files here already consisted only of clauses in CNF form, which
after parsing are passed to the resolution algorithm as a vector (structure in Rust) with a list of
all the clauses. The resolution algorithm is kept very simple here. The main resolution function
resolution() iterates through the entire clause set of the input. The first clause is initially designated
as ”Clause a” and compared with every other clause in the clause set. The aim of the comparisons
is to find a complementary literal pair so that the two clauses can be resolved. This check for the
existence of a complementary literal pair is carried out using the function find resolvent() function.
This function checks the two clauses to be compared and resolves them if a complementary pair is
present. When resolving, the complementary pair is removed and the remaining clause contents are
added to a new clause, the resolvent. By storing the resolvent in a hash set, it is also checked for
possible duplicates, which are removed before the resolvent is added to the existing clause set. The
new resolvent is then added to the existing clause set, provided that there is not yet a clause identical
to the resolvent. The avoidance of duplicates is also easily implemented here by using a hash set.
All in all, the system iterates through the existing clause set extended by resolvents until no more
new resolutions are possible or until an empty clause is found. The functionalities of the resolution
algorithm are shown in pseudo code ”Algorithm 9 Main Resolution Algorithm for CNF Formulas”.
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Algorithm 9 Main Resolution Algorithm for CNF Formulas
Require: A CNF formula cnf formula
Ensure: Returns a list of clauses or an error if unsatisfiable

unprocessed clauses← queue from cn f f ormula.clauses
▷ Initializes the queue with CNF clauses

resolved clauses← empty hash set ▷ Tracks clauses that have been processed or resolved
new clauses← empty hash set ▷ Temporarily stores new clauses formed by resolution
while unprocessed clauses is not empty do ▷ Continue until all clauses are processed

clause a← pop front from unprocessed clauses
▷ Retrieve and remove the next clause for processing

for each clause b in unprocessed clauses do
▷ Compare clause a against all remaining clauses

if clause a is not clause b then ▷ Avoid self-resolution
resolvent← FINDRESOLVENT(clause a,clause b) ▷ Attempt to resolve clause a

and clause b
if resolvent is not None then

▷ Check if a resolvent was successfully formed
if resolvent.literals is empty then

▷ Check for an empty clause
return Error ”Unsatisfiable”

end if
if not in resolved clauses and not in new clauses then

▷ Ensure resolvent is not already processed or scheduled for processing
add resolvent to new clauses

▷ Add new resolvent to new clauses
add resolvent to resolved clauses

▷ Mark resolvent as processed
end if
add clause a and clause b to resolved clauses

▷ Mark both original clauses as processed
end if

end if
end for
if new clauses is not empty then

▷ Check if new clauses were generated in this iteration
add all from new clauses to resolved clauses

▷ Merge new clauses into resolved clauses for tracking
add all from new clauses to unprocessed clauses

▷ Save new clauses for further resolution
clear new clauses

▷ Clear new clauses for next loop iteration
end if

end while
return list of resolved clauses

▷ Return all resolved clauses as the result of the algorithm
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Example. Resolution with propositional logic inputs: Here is another short example, which is
also a benchmark in the resolution prover:

File: unit.cnf

c sat

p cnf 3 3

1 2 3 0

1 -2 0

-1 0

This input returns the following clause set after the execution

of the resolution algorithm. The input is also satisfiable,

as no empty clause could be generated.

Clause { literals: [Positive("1"), Negative("2")] }

Clause { literals: [Positive("1"), Positive("2"), Positive("3")] }

Clause { literals: [Positive("3")] }

Clause { literals: [Negative("2")] }

Clause { literals: [Positive("3"), Positive("2")] }

Clause { literals: [Negative("1")] }

Clause { literals: [Positive("3"), Positive("1")] }

3.4.2 Implementation for first order logic inputs

If the first order logic inputs are available in a suitable CNF clause form, then the resolution
algorithm previously explained for propositional logic inputs can basically also be applied to the
extended first order logic inputs, but with some new specifications and special features. There is
again a main resolution algorithm here, which controls the resolution process. Again, two clauses
from the clause set are compared and the find resolvent() function is called to check for a possible
resolution. After a pair of clauses has been resolved, I have added a new check here, which compares
the resolvent with the current main clause ”Clause a” again for possible resolvents, in order to bring
about a potential empty clause more quickly. After this new check, the clauses are added to the
clause set and the next clause is considered as ”Clause a” and checked with the entire clause set
for possible resolutions, including the previously created resolvents. So far, there is no significant
difference to propositional logic, except that when checking for a complementary pair, not only the
name of the predicate is considered and compared, but also the terms contained therein. A special
feature that is added when using first order logic inputs in the resolution algorithm is the use of
unification. I have used the principle of delayed unification (Bhayat2023) for this, which means
that unification is only carried out in the last step if necessary. I have implemented two resolution
steps for this. First, resolution is performed as usual and a clause set is returned that contains all
clauses that were created in the resolution process as well as the initial input clauses. This clause
set is then used for the second resolution step, which I call resolution with unification. The aim
here is to check whether further unification steps can be carried out as efficiently as possible and
preferably with as few substitutions as possible. When implementing the resolution algorithm for
first order logic inputs, it was important for me to find a clear separation of interests and tasks with
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regard to the resolution of two clauses, as there can potentially be several ways of resolving two
clauses and unification is a much more complex operation, as in the case of a substitution, this
must be applied to the entire clause set. I have therefore decided to carry out resolution without
unification in the first resolution step, as empty clauses could already be found here. For the
purpose of completeness, the second step then uses unification to search for further resolution
possibilities. Since the first step of the resolution for first order logic inputs is very similar to the
implementation for resolution for propositional logic inputs, I will dispense with the pseudo code
at this point, because the main difference here is the unification, which will now be explained in
more detail (see ”Algorithm 10 Resolution with Unification” and ”Algorithm 11 Unify and Resolve
Two Clauses”). In the second step, the previously generated clause set is iterated through and
further resolvents are found by means of unification. Here, we only look for resolving options
that require a substitution, as all other resolving options have already been explored in the first
resolving step. Here, the resolution with unification() function is the main control function, as it
controls the iteration through the clauses and calls the corresponding helper functions for further
processing, including the unify and resolve() function, which is the pedant to find resolvent from
the first resolution step. Here, two specific clauses are checked for unification possibilities. To do
this, it is first determined whether they are a complementary predicate pair. The term content is
then compared and checked for a possible substitution. It is also checked here whether the term
content is a skolem constant or a skolem function, as these require extra treatment and cannot
simply be substituted by any variables as part of the unification. The apply substitutions function is
responsible for the actual substitution. The unify() function finally performs the actual unification
and also ensures that this error is avoided by calling the occurs check function.
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Algorithm 10 Resolution with Unification
Require: Vector of clauses final clauses
Ensure: Returns a sorted list of resolved clauses or an error if unsatisfiable

Sort final clauses by the number of literals and the first predicate name
▷ Initial sorting to optimize processing

unprocessed clauses← queue from final clauses
▷ Initialize queue for systematic processing

resolved clauses← new HashSet
▷ Store resolved clauses in HashSet to avoid duplication

while not unprocessed clauses.is empty() do
▷ Process until all clauses are examined

clause a← pop front from unprocessed clauses
▷ Take the first clause for resolution

new clauses← new HashSet
▷ Temporary storage for new clauses formed in this iteration

for each clause b in unprocessed clauses do
resolvent← UNIFYANDRESOLVE(clause a,clauseb)

▷ Attempt to unify and resolve clause a with clause b
if resolvent is not None then

if resolvent.literals is empty then
return Error ”Unsatisfiable with unification”

▷ Empty clause found, CNF is unsatisfiable
end if
new clauses.insert(resolvent)

▷ Add the new resolventl
end if

end for
insert clause a into resolved clauses

▷ Move clause a into resolved clauses
if not new clauses.is empty() then

extend resolved clauses with new clauses
▷ Add new clauses to the set of resolved clauses

extend unprocessed clauses with new clauses
▷ New clauses need to be processed in future iterations

end if
end while
f inal uni f ied clauses← list from resolved clauses

▷ Convert resolved clauses set into list
sort f inal uni f ied clauses by the number of literals

▷ Sort the final clauses for further processing
return f inal uni f ied clauses

▷ Return the sorted list of resolved clauses



33

Algorithm 11 Unify and Resolve Two Clauses
Require: Two clauses clause one and clause two
Ensure: Returns a new clause if unification is successful, otherwise None

for each lit one in clause one.literals do
for each lit two in clause two.literals do

if lit one.predicate() == lit two.predicate() and lit one.is negation o f (lit two) then
▷ Check if literals can be unified and resolved

substitutions← new HashMap
subst← UNIFYTERMS(lit one.get terms(), lit two.get terms(), substitutions)
if subst is not None and not CONTAINSSKOLEM(substitutions) then

new literals ← union of clause one.literals and clause two.literals without
lit one and lit two

APPLYSUBSTITUTIONS(new literals, subst)
▷ Apply substitutions to the remaining literals

return new Clause with new literals
▷ Return the new resolvent

end if
end if

end for
end for
return None

▷ Return None if no resolvable unification found
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4 Evaluation and tests

4.1 Environment
The inputs of both resolution provers were tested in the following environment:

• Operating System Windows 10

• CPU i7 8th generation, 4 cores + hyperthreading

• 16 GB RAM

• Intel(R) UHD Graphics 620

• 256 GB SSD

This software versions were used:

• Visual Studio Code as IDE version 1.91.1

• Rust version 1.72.1

• Pest Parser library version 2.7.5

4.2 Tests and benchmarks
In order to check the correct implementation of the resolution algorithm, SAT competition bench-
marks were used for the propositional logic resolution prover, of which some files are satisfiable and
some are unsatisfiable. The complexity of the inputs is determined by the structure and number of
clauses, which varies in the input files from at least 2 up to 112 clauses. The first order logic input
files were taken from the website TPTP.org (Thousands of Problems for Theorem Provers). This
is a constantly growing comprehensive library of problems for automated theorem provers, which
are all stored in a standardized format (TPTP language format). This also facilitates the design of
provers, as they can easily interpret various problems in the library. The grammar of the TPTP
format is well described on the website and ensures a standardized representation of the individual
problems and problem classes that are used as input for the prover. The exact benchmarks used can
be found in the implementation of the respective prover in the Benchmarks folder.

Since the development of a resolution prover for the entire TPTP problem library would
definitely go beyond the scope of this work, if possible at all, I have only concentrated on a problem
subset, which I have taken from this category: TPTP Benchmarks SYN In my final implementation,
the three input files SYN044+1.p, SYN055+1.p and SYN056+1.p are implemented for the use of the
resolution prover, as I found these three files the most meaningful for explaining the functionality of
my prover. All three input files have the same basic structure: The existing formulas are given in fof
format (first order logic formula) and are either axioms or a conjecture. Each input file contains a
varying number of axioms and always a conjecture. My CNF converter was designed precisely for
the application of CNF conversion to formulas in fof format. Accordingly, other input files can also
be processed, provided they also follow this structure. Of course, in addition to these three inputs,
many other input files have also contributed to the development of the prover, which can be viewed

https://tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=SYN
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in the Git project in earlier versions of the program. Nevertheless, this total quantity of used and
suitable input files represents only a small fraction of the TPTP problem library.

In order to be able to understand the process of the resolution algorithm, I have added additional
informative logging at the relevant points in the code, which can be activated if required. This
allowed me to try out and test various inputs and always analyze the executed steps of the algorithm.
I wrote concrete tests when designing the parser, among other things, as the asserted output can be
described very clearly here. In addition, I also wrote tests for the resolution algorithm, which receive
either satisfiable or unsatisfiable inputs and accordingly check the respective assertion ”satisfiable”
or ”unsatisfiable” after the resolution has been carried out. However, hard coding the exact output of
the resolution of certain input files as part of a test does not make sense at this point, which is why I
did not do this, but only looked at the general output ”satisfiable” or ”unsatisfiable”. Depending
on the order of the clause combination or resolvent formation, the output of the resolution can
theoretically look different after each run. Especially with an unsatisfiable input, the output can vary
depending on how quickly and skillfully an empty clause was detected. The implemented tests for
the propositional logic prover can be found under src/lib.rs. For testing the first order logic prover,
I decided to use extensive logging, although concrete tests were also written when designing the
parser. These can be found directly in parser.rs. I used these tests to check the recognition of the
formula structures. However, as this parser did not work completely until the end, I would just like
to refer to it at this point.

5 Conclusion

5.1 Objectives achieved: Reflection of the results in the context of the objec-
tive of the thesis

In this thesis I developed two resolution provers in the programming language Rust, one for
propositional logic inputs and one for first order logic inputs which also corresponds to the objective
of this thesis. The main focus was on the development of the resolution prover for FOL inputs,
which is based on the other prover, but implements some significant changes and extensions. The
challenge here was on the one hand to convert the existing inputs from a first order formula format
into a CNF clause form suitable for the resolution algorithm and on the other hand to handle these
more complex clauses correctly in the context of resolution. For this purpose, functions were
implemented that can perform unification, i.e. resolution by means of substitution, on this FOL
input. The principle of delayed unification was applied here to ensure that unification is integrated
into the existing resolution process in a regulated manner. With the development of these two
provers and the plan to make the program code available to the Rust community in the future, a
further contribution has been made to the development of theorem provers in the Rust language. In
the process of this project, I was also able to gain insight into many other exciting mechanisms and
optimization possibilities, which I will explain at the end as an outlook.

5.2 Challenges and learning outcomes
This project definitely had some challenges, not least because I was new to Rust as a programming
language and also because this topic of theorem proving in this depth was new to me. In the
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beginning, the development of the parser in particular took up a lot of time and resources, although
in the end the FOL parser was not fully functional and a workaround was created. Here I definitely
took away the learning that I should not put so many resources into parser development if the
actual goal of the work is something else. Another important component is the CNF converter.
Although the main goal of this work is the development of a resolution algorithm, the development
of the CNF converter ultimately took at least as much time and even made up a significantly larger
part of the program code. At this point, one could therefore have looked for FOL inputs that are
already available in a CNF structure in order to be able to concentrate mainly on optimization
possibilities and additional heuristics in the actual resolution. However, I personally still considered
the development of the CNF converter to be important in the context of this thesis, as I was able to
deal explicitly with the special features and characteristics of first order logic and therefore gain
even deeper insights into theoretical computer science. Furthermore, I would have liked to spend
more time on testing and implement more automated tests. Nevertheless, I learned a lot of new
knowledge during this thesis, both in terms of methodology and content. I will hopefully be able
to apply this new knowledge and experience to future projects and possible continuations of this
project.

5.3 Possible extensions
During the development of the two provers, I constantly came across opportunities for improvement
and enhancements. I was able to implement some of them straight away, but there are also some
things that could be considered as future work. I would like to explain some ideas here. A tautology
check could be implemented in the entire resolution process, as clauses that represent a tautology
have no use in the context of the resolution and can be removed from the clause set in order to keep
them as small as possible. An initial approach has already been implemented for this, but would
need to be expanded and is therefore currently marked as a TODO. A further optimization could
be made in the CNF converter in the section of the application of the distributive laws, because
for significantly larger input clauses it can be a considerable effort to bring the clause into a CNF
using distribution mechanisms. At this point, you could therefore consider implementing a Tseytin
transformation. Roughly speaking, formulas are first converted into equations and then into clauses.
Newly introduced variables represent certain sub formulas. However, it is important to note that the
result of this transformation is not an equivalent result to the previous formula, but an equisatisfiable
result, which is why the introduction of this transformation must be analyzed in detail for the
respective context of the task. There are also a few ideas that can be tried out in the context of
resolution to make this algorithm more efficient. For example, mechanisms could be implemented
that try to detect a contradiction as efficiently as possible, for example by preferentially processing
smaller clauses. In my current implementation, every clause is compared with every other clause in
the clause set for the sake of completeness, but suitable heuristics and methodologies could be used
to implement a preselection that would possibly lead to an empty clause more quickly, which could
save a large number of resolution steps. Another goal that I would like to implement in the future is
to finalize the FOL parser so that even more inputs can be entered and processed in a more agile
way in the future and do not have to be explicitly hard coded. At the same time, further suitable
inputs could be found and extensions created in the code to be able to process even more diverse
problem classes from TPTP instead of just first order formulas as is currently the case.
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6 Source Code
The complete implementation of both resolution provers can be viewed on GitHub by following
this link Git Repository for Resolution Prover in Rust . A current version of Rust must be installed
in order to run the resolution prover. After navigating into the source (src) folder the code can be
started with ”cargo run”. There is then an interactive prompt on the command line to navigate to the
desired input file. After selecting the preferred input, it is processed by the resolution prover and
the user receives the result ”satisfiable” or ”unsatisfiable”, together with a list of the resolution steps
performed and in the case of ”satisfiable” also a list with the new clause set.

https://github.com/wrosmus/resolution-prover-in-rust
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