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Abstract

Term indexing methods have a major impact on the speed of logic programming lan-
guages and automated theorem proving systems. Substitution trees are well estab-
lished term indexes for logic programming and theorem proving because of their per-
formances. However, they rely on heuristics and ignore the partial order that is in-
herent to terms. On the other hand, instance tries have been recently proposed as a
novel term index for logic programming and automated theorem proving. Instance
tries make use of the term order without having to resort to heuristics. In this bache-
lor’s thesis, the efficiency of instance tries is examined in more detail on the basis of

established benchmarks and and it is compared with that of substitution trees.
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1 Introduction

1.1 Motivation and overview
1.1.1 Motivation

First-order terms constitute the basic representational unit of information in several
disciplines of computer science such as automated deduction, term rewriting, sym-
bolic computing, and logic and functional programming. In contexts where the data
sets get large and/or keep growing, as in automated theorem provers and deductive
databases, new techniques are needed to speed up the operations on terms. The time
saved from operations like retrievals of candidate terms, could be used for performing
other useful computations.

The interest in term indexing has grown, as experiments pointed out that theorem
provers that use generative procedures like resolution (Robinson,1965b; Chang and
Lee, 1973) or Knuth-Bendix completion (Knuth and Bendix,1970) face the problem of

performance degradation, as mentioned by Wos [1992]:

“After a few CPU minutes of use, a reasoning program typically makes

deductions at less than 1 percent of its ability at the beginning of a run.”

Term indexing particularly influences a system’s performance by providing rapid
access to first-order terms with specific properties. Several term indexing methods
have been developed and several experiments have been conducted on them. Until
now, substitution trees achieve maximal search speed paired with minimal memory
requirements in various experiments and outperform traditional techniques such as
path indexing, discrimination tree indexing, and abstraction trees by combining their
advantages and adding some new features.

Advances in term indexing had great impact on the design and performance of au-
tomated reasoning systems in the last decade. As efficiency and progress remain the
main focus of researchers, a new term indexing technique has been implemented,
namely instance tries. The focus of this thesis is to validate experimentally that in-
stance tries perform updates and retrieval operations faster than substitution trees. To
evaluate both instance tries and substitution trees, firstly, both data structures have
been implemented in the Rust programming language. Afterwards, the performance
of both has been examined on the basis of established benchmarks. Lastly, the results

from the instance tries and substitution trees have been compared and a conclusion



has been drawn.

1.1.2 Overview

This thesis is structured as follows. Chapter 2 gives a brief introduction on term in-
dexing. Chapter 3 is dedicated to substitution trees and one of its central algorithm,
the most specific common generalisation. In chapter 4, instance tries are being pre-
sented, as well as their key algorithm, the instance trie unification algorithm. At the
end of chapter 4 the approach of the implementation of the instance tries is presented.
In chapter 5, the focus lies on the test cases, as well as the performance and measure-
ments. The results are being presented in Chapter 6 to 8 and in chapter 9 future work

and suggestions are considered.

1.2 The programming language Rust

In term indexing systems speed is of utmost importance. The choice of a programming
language dictates the speed of an application program. One programming language,
which promises efficient code, is Rust.

Rust is a programming language, the runtime system of which is open source, that fo-
cuses on speed, memory safety and parallelism. Developers use Rust for a wide range
of applications: Game engines, | operating systems, f| data systems and browser com-
ponents (Mozilla 2016). An active community of volunteer coders maintain the Rust
programming language and continues to add new enhancements. Mozilla sponsored
the Rust open source project (https://www.rust-lang.org) for several years.
Rust makes systems programming accessible by combining speed with efficiency. Us-
ing Rust, programmers can make software less prone to bugs and security exploits.
Many statically-typed languages allow for the concept of NULL. Like Haskell and
some other modern programming languages, Rust encodes this possibility using the
type system.

One of the biggest benefits of using a systems programming language like Rust is the
ability to have control over low-level aspects. Rust, in particular, offers the choice of
storing data on the stack or heap and determines at compile time when memory is no

longer needed and can be cleaned up. This allows an efficient use of memory as well

'https://arewegameyet.rs
*for example Redox OS
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as a performant memory access.

Unlike many existing systems programming languages, Rust strives to have as many
zero-cost abstractions as possible. To put it bluntly, the programmers’ coding style
should not affect the performance.

The biggest benefit Rust can provide compared to other languages is a borrow checker.
This part of the compiler is responsible for ensuring that references, values that refer
to certain data but do not own it, do not outlive this data. This provides the opportu-
nity to eliminate entire classes of bugs caused by memory unsafety.

This benefit, can also become a difficulty of the Rust programming language. The fol-
lowing example creates a mutable string which contains a name and then applies a
reference to the first three bytes of the name. While that reference is outstanding,
we attempt to mutate the string by clearing it. Since there is no guarantee that the
reference points to valid data and the action of dereferencing could lead to undefined

behaviour, the compiler returns an error message:

fn no_mutable_aliasing () {
let mut name = String::from(”Vivian”);
let nickname = &name[..3];
name. clear (); //Truncates this String , removing all contents.

println! (”Hello  there,_ {}!”, nickname);

error [E0502]: cannot borrow ‘name‘ as mutable because it is also
borrowed as immutable

-—> a.rs:4:5

|
3 let nickname = &name[..3];
| --—- immutable borrow occurs here
4 | name. clear ();
| AnAnAaAAnAAAA mutable borrow occurs here
5 | println! (”Hello  there, _ {}!”, nickname);
ittt immutable borrow
later used here
For more information about this error, try ‘rustc --explain E0502 °.

Helpfully, the error message incorporates the code and tries hard to explain the prob-
lem, pointing out exact locations. There is a reference pointing into the string, that

the program has to clear. Doing so might require that the memory of the string be



freed, invalidating any existing references. In case this happens and it is used in the
value of "nickname” we would be accessing uninitialised memory, potentially causing

a crash.

2 Overview on term indexing

Term indexing supports the construction of efficient automated reasoning systems,
as e.g. automated theorem provers, by allowing rapid access to first order predicate
calculus terms with specific properties. Advances in term indexing had great impact
on the design and on the performance of automated reasoning systems in the last

decade. This chapter provides an overview on term indexing.

2.1 Automated reasoning

Automated reasoning is a sub-field of artificial intelligence (Graf 1996). The study of
automated reasoning helps produce computer programs that assist in solving mathe-
matical and logical problems. Starting with the formal description of a specific prob-
lem, an automated reasoning system draws conclusions that logically follow from the
supplied facts (Bentley 1995).

2.2 Automated theorem proving

One of the most developed subareas of automated reasoning is automated theorem
proving. Researchers in automated theorem proving seek to develop software that
does non - trivial mathematics. More specifically, automated theorem proving is
dealing with proving mathematical theorems by computer programs. At the most
ambitious level, the hope is to eventually produce programs that can solve extremely
difficult open problems (Graf 1996). Automated reasoning over mathematical proofs

was a major impetus for the development of computer science.

2.3 Logic Programming

Another subfield of automated reasoning is logic programming. The aim of logic pro-
gramming is to use formal logics as a programming language. Any program written

in a logic programming language is a set of sentences in logical form, expressing facts



and rules about some problem domain. Major logic programming language families

include Prolog, answer set programming (ASP) and Datalog.

2.4 Term indexing

Indexes are used in computer science to ensure fast access to data in a large data
collection. Data is typically managed sequentially on a storage medium. Processing a
search query without indexing would involve linear effort, in the worst case the entire
data would have to be searched.

In general, an index can be seen as a means for accessing and retrieving data associated
with a certain query key 7 from an index of standard database systems, by comparing
the indexed keys s; saved in the database with the query key ¢ (Graf 1996).

In automated reasoning systems an index is used to access and retrieve data elements
based on a query term¢. For this, the indexed term denoted as s;, needs to be compared
with the query term z. The comparison of this retrieval operation will not only be
based only on equality relations, but on several binary relations in automated theorem
proving with the property R(s;,7). These relations are called retrieval conditions (Graf
1996).

Hence, the problem of term indexing can be formulated abstractly as follows. Given a
set L of indexed terms, a retrieval condition R over terms and a query term ¢, identify
the subset S of L that consists of the terms s; such that R(s;,7) holds.

Most interesting retrieval conditions are formulated as existence of a substitution that
relates in a special way the query and the retrieved objects s;. Four of these retrieval
operations of concern are variants, generalisations, instances, and terms that unify

with a given term and are defined as follows.
Definition 2.1 (Standard Relations).

« Unification: The relation Unif(s;,¢) holds if and only if s; and ¢ are unifiable,
that is there exists a substitution ¢ such that s;c = to.

« Instance: The relation Inst(s;,7) holds if and only if s; is an instance of ¢, that is

there exists a substitution ¢ such that s; = to.

« Generalisation: The relation Gen(s;,t) holds if and only if s; is a generalisation

of ¢, that is there exists a substitution ¢ such that s;c =1t.



« Variant: The relation Vari(s;,7) holds if and only if s; is a variant of ¢, that is

there exists a renaming substitution ¢ such that 5,0 =1.

Such a retrieval of candidate terms in theorem proving is interleaved with inser-

tion of terms to L, and deletions from L.
In order to support rapid retrieval of candidate terms, we need to process the indexed
set into a data structure called the index. Indexing data structures are well-known to
be crucial for the efficiency of the current state-of-the-art theorem provers (Nieuwen-
huis et al. 2001).

Based on the observation that the performance of automated reasoning systems
can be increased by using an index for the retrieval and maintenance of data, the main
task of this thesis can be formulated as follows:

Present an existing term indexing technique, substitution trees, and a new term indexing
data structure, instance tries, and compare them with each other on hand of experimental

results.

3  Substitution trees

3.1 Overview

This section gives an introduction to the substitution tree indexing and defines sub-
stitution, idempotent substitution and normalisation of substitutions. Furthermore, it
explains substitution trees and their implementation in this bachelors’ project.

Let V and F be two disjoint sets of symbols. V denotes the set of variable symbols
and V* C V is the set of indicator variables. The set of n-ary function symbols is
F, and FF = UF;, for 0 < i < n. Furthermore, T is the set of terms with V C T and
f(ty,..ty) €T if f € Fyandt; € T, for 0 < i < n. The variables occurring in a term ¢
or a set of terms are denoted by V (¢). Function symbols with arity 0 are called con-
stants. In the following examples the symbols u, v, x, y, z € V,xi € V*, f € F\F) and
a, b € Fy are used.

3.1.1 Substitution

Example 1. A substitution ¢ is a mapping from variables to terms represented by

the set of assignments {x; — 71,...,x, — t,}. The set DOM(06) ={x €V | o(x) # x}



is called domain of o, the set COD(c) = {o(x) | x € DOM(05)} the codomain of o,
and I(0) = V(COD(0)) is the set of variables introduced by ©.

3.1.2 Idempotent substitution

A substitution o is called idempotent if and only if 60 = 0, and hence rt0c6 = t0o for
every term ¢. The substitution {x; — 71, ...,x, — #,} is idempotent if and only if none
of the variables x; occurs in any #;. Substitution composition is not commutative, that

is, 0T may be different from 70, even if 0 and 7 are idempotent.

Example 2. The substitution {x — y+ y} isidempotent, e.g. ((x+y){x —y+y}){x—
y+y}=((+y)+y){x = y+y} = (y+y) +y, while the substitution {x — x+y} is
non-idempotent, e.g. ((x+y){x = x+yPH){x > x+y} =((x+y)+y){x—>x+y} =
((x+y)+y)+y.

3.1.3 Matcher

A substitution o is called a matcher from term s to term ¢ if s¢ = ¢. In this case s is

called a generalisation of ¢ and ¢ is called an instance of s.

3.1.4 Positions in a term

In this subsection the position in a term is defined (Graf 1996). Let f(t1,..,%,), n € N,
be a term ¢ with subterms #;, 1 < i < n. The subterm f; of the term f(t1,..,1,) at the
position p, is denoted as ¢/p and can be recursively defined as ¢/p = 1; if the finite

sequence of natural numbers p starts with i.

Example 3. Let a be a constant, g(a) and f(g(g(a)),g(a)) be terms. The term g(a)
occurs at positions [1, 1] and [2] in f(g(g(a)),g(a)).

3.1.5 Normalisation

In this section normalisation of terms and substitutions is introduced. Normalisation
is a variable renaming from the set of non-indicator variables V\V* to the set of indi-
cator variables V*. The goal of normalisation is to allow for variable sharing between

all substitutions stored in the index, thereby reducing memory consumption.
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Normalisation of terms Let s = f(¢1,...,,) be a term with py, ..., p,, denoting posi-
tions of all unique variables in 5. The substitution ¢ = {s/p; — *i,...,5/pm — *m}
with i € V* is called normalisation. The normalised term for a term s is denoted by

§ and it holds that § = so, where o is a renaming substitution.

Normalisation of substitutions Let ¢ = {x; — 11,...,x, — f,} be a substitution and
< an ordering on variables such that x; < ... < x,. The normalisation of &, denoted
by O, is based on the normalisation of terms. Therefore, let t = f,(t1,...,2,). The
normalisation of  is 7 = f,(t1,...,1,). Now, the normalisation of & is defined as G =

{xi =1/1,...,x, > 1/n}

Example 4. Let f be a binary function symbol, ¢ a substitution, u, v, x, y variables,
1, %2 indicator variables and a a constant. If 6 = {x — f(u,v),y — f(a,v)} and
x < ythen 6 = {x — f(x1,%2),y — f(a,+2)}. This is the case as the terms f(u,v)
and f(a,v) are normalised to f(x1,%2) and f(a,*2), based on the above mentioned
normalisation of terms. However, if we had chosen y < x then ¢ would have the

normalisation 6/ = {x — f(¥2,*1),y — f(a,*1)}.

3.2 Substitution trees and their implementation

In this chapter substitution tree indexing is presented as an indexing technique. Sub-
stitution tree indexing (Graf[1996) is a highly successful first-order term indexing strat-
egy which allows the sharing of common sub-expressions via substitutions. The labels
of substitution tree nodes are substitutions (see chapter B.1.1). Each path in the tree
therefore represents a binding chain for variables. Consequently, the substitutions of
a path from the root node down to a particular node can be composed and yield an
instance of the root node’s substitution.

Substitution trees can represent any set of idempotent substitutions B.1.4. However,
only paths from the root node to leaf nodes actually represent terms to be stored while
shorter paths do not. This is in contrast to instance tries. In the simplest case all these
substitutions have identical domains and consist of a single assignment, which implies

that the substitution tree can be used as a term index as well (Graf/ 1996).

Example 5. We illustrate substitution tree indexing with an example set consisting

of the following substitutions:

{u—fla,b)}, {u—fb)}, {u—f(b,2)}
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which obviously represent a term index for the terms:

fla,b), f(y.b), [f(bz)
While substitutions are inserted into the index, their codomain is renamed. Normal-
isation changes all variables in the codomain of a substitution. The substitu-
tions inserted to the index in figure [I| therefore is {u — f(a,b)}, {u — f(x1,b)} and
{u — f(b,*1)}. The following tree was produced by inserting each of these substitu-

tion into the index.

{u— flx1,x2)}

{xo = b} {x1 = b,x, — x1}

{xi =a} {x; —=x1}

Figure 1: Substitution Tree

3.2.1 Variant nodes

In this section, the definition of variant nodes in substitution trees is presented. Vari-
ant nodes are needed in the update and retrieval operations of substitution trees. For
example, when inserting an expression to a substitution tree, the position has to be
first detected where the expression will be inserted. The search for variant nodes is
going to determine this position.

Let N = (£,Q) be a substitution tree and p a substitution. Then

V(N,p) := {o | Vx; € DOM(Y). 6 (p(E(x:))) = p(x;) ADOM(c) NV* = 0}

3.3 MSCG (Most Specific Common Generalisation)

To build a substitution tree, the MSCG (Most Specific Common Generalisation) be-
tween two expressions is needed. This operation is necessary to build and maintain
substitution trees or retrieve elements from the index.

This section considers the computation and usage of the most specific common gener-
alisation algorithm as presented in the book "Term Indexing” (Graf[1996:154). Further-
more, it details its implementation of the aforementioned and finally, it presents the
algorithms’ performance, concluded by certain runtime and storage measurements

and presents related work.
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3.3.1 Computing a common generalisation of two substitutions

Let 71 and 7, be two substitutions. If substitutions u, 67 and 0, exist such that too; =
71 and U 0 03 = Ty, then U is called a common generalisation of 7| and 7,. A common
generalisation u is called most specific (mscg) if there is a substitution A for all common
generalisations v such that v = gt o A. The most specific common generalisation for

71 and 7, is computed by the function

mscg(T1,72) == (U, 01,02)

The substitution u is called the most specific common generalisation (mscg) for 7; and

7. The substitutions 0] and o, are called specialisations.

Example 6. Suppose T = {x — g(b),y = a} and p = {x — g(a),y — b}. Although

{x — g(x1)} and {x — x;} are common generalisations of T and p, we have

mscg(T,p) = ({x = glx) }, {x1 = b,y = a},{x1 = a,y — b}).

The original substitutions 7 and p can be reconstructed by 7 = {x — g(x1),y —
xp}o{x; = b,x; »a}and p = {x — g(x1),y = x2} o {x; = a,x; — b}, respectively.
Note that x; and x; are new auxiliary variables. These auxiliary variables represent
the parts of the substitutions which differ from each other.

There is more than one way to compute the MSCG, for example
mscg(t,p) = ({x = g(x1),y = x2},{x1 = b,xo = a},{x; — a,x, — b}).

However, the computation of the most specific common generalisation for the use in

substitution trees require the one mentioned above.

3.3.2 Usage

The aim of the implementation of the MSCG algorithm, is its use in one of the most
important tree operations, the insertion of a tree element. The insertion process is
very similar to finding variant entries in the tree. When looking for variant nodes,
indicator variables are not bound. However, since the substitution to be inserted must
be normalised, the test for variant nodes succeeds in matching two identical indicator
variables. A heuristic is used for descending into the tree. It has to handle three
different situations: First of all, the heuristic has to select a variant subnode of the

current node for descending if such a variant exists. Second, the heuristic selects



13

a non-variant subnode, which yields a non-empty MSCG, if a variant could not be
found. Third, if neither a variant nor a subnode that yields a non-empty common
generalisation could be found, the heuristic has to select the empty tree for insertion.

In this case the insertion function creates a new leaf node.

Example 7. Insertion of the substitution {x — f(c,g(d))} to tree A in figure @ em-
ploys the above-mentioned heuristic. As the substitution to be inserted actually is
a variant of the root of the tree, the heuristic has to select the subnode of the tree
where the insertion process is to be continued. Assume that the node marked with
{x1 = *1,x, — g(b)} is selected. Because this node is not suited for the insertion of
the new substitution a new intermediate node containing the generalization of this se-
lected node and the new substitution has to be created. The resulting tree B in figure
contains a new leaf node and a new inner node marked with{x, — g(x3)}. This substi-

tution is the most specific common generalisation of the substitutions{x; — *1,x, —
g(b)} and {x; — ¢,x, — g(d)}.

x— f(x1,x2)

x; — *1,x — g(b) rightNode
|
x— f(z,8(b)),x = f(v,8(D))

Figure 2: Tree A

x = f(x1,x2)

X2 — g(x3) rightNode

x1 — x1L,xp — g(b) X1 —c,x3—d
| |
x— f(z,8(b),x — f(».g(b) x— f(c,g(d))

Figure 3: Tree B
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4 Instance tries

This chapter presents a new term indexing data structure, called the instance tries
(Prokosch & Bry 2020). Unlike other term indexing data structures, instance tries do
not rely on heuristics but do consider the partial order of terms. As this term indexing
data structure is completely new, it had not yet been considered in experiments.
Goal of this bachelors’ thesis is to implement instance tries in Rust, conduct various
experiments on real-life datasets and show that they outperform existing term index-
ing data structures.

A key characteristic of instance tries is that they rely on a matching-unification algo-
rithm. In the following sections, we will explain the term “unification”, as well as the

unification problem and its connection to instance tries.

Joerg Siekmann in Unification Theory (1989):

"Most knowledge based systems in artificial intelligence (AI), with a com-
mitment to a-symbolic representation, support one basic operation: match-
ing of descriptions. This operation, called unification in work on de-
duction, is the addition-and-multiplication of Al-systems and is conse-
quently often supported by special purpose hardware or by a fast instruc-

tion set on most Al-machines.”

4.1 Unification algorithms

Unification is one of the key procedures in first-order theorem provers. Most first-
order theorem provers use a unification algorithm from Robinson (Hoder & Voronkov
2009). Robinson published several unification algorithms, the widely known one re-
quires exponential space, while others require quadratic space. Although the com-
plexity of the well-known one is exponential in the worst case, the algorithm is easy to
implement and examples on which it may show exponential behaviour are believed to
be atypical. More sophisticated algorithms, such as the (Martelli & Montanari 1982) or
the (Paterson & Wegman 1978) algorithm, offer polynomial or even linear space com-
plexity but are harder to implement (Hoder & Voronkov 2009). Very little is known
about the practical performance of unification algorithms in theorem provers: Previ-
ous case studies have been conducted on small numbers of artificially chosen problems

and have compared term-to-term unification while the best theorem provers perform
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set-of-terms-to-term unification using term indexing, see section 2.

4.1.1 Unifier

A substitution, as mentioned in chapter 3, is an assignment of terms to variables.
In essence, the unification problem in first-order logic can be expressed as follows:
Given two expressions containing some variables, find, if it exists, a substitution which

makes the two expressions equal. The resulting substitution is called an unifier.

Two expressions e] and e, are unifiable iff
A elA = e

The substitution A is a most general unifier of these two expressions, iff for every

unifier o there exists a substitution 7 such that

oc=AT

Example 1. Let functions f and g, a and b constants, and x and y variables, and

consider the two first order terms s and 7 built from these symbols as follows:

s=fxb)  1=f(ay)

The unification problem is whether or not there exist terms, which can be substituted
for the variables x and y in s and ¢ so that the two terms thus obtained are identical.

In this example a and b are two such terms and we write

A={x—a,y—b}

4.1.2 Instance

In this section, the term instance is explained and why it is important for the instance
tries. An instance trie is a hierarchical means of viewing instances, which have a
logical relationship between them. Moreover, every instance trie is built by inserting

queries into an index, such that the query is an instance of an expression, in the index.

Example 2. Let x, y variables and a, b constants. The following expressions should

be added in this order to the at first empty index:
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f(x,y), flx,b), flay), flab).

In order to determine where every expression will be inserted, we need to keep
in mind that every child node should be an instance of its parent node. For example
having inserted the first three expressions to the index we get the tree presented in
figure . We now want to insert the last expression to the index. As f(a,b) is an
instance of node f(x,b), the expression will be placed under it and we will get the

tree pictured in figure b,

fx,y) f(x,y)

N
A Tl FED) flay)

Figure 4: Subtree f(a,b)

Figure 5: Complete tree

4.1.3 Matching and instantiation

Let A be a substitution. Often we are looking for one-sided unification (matching):

An expression e; is an instance of expression e; iff
JA: e = 6’21

Matching (i. e. One-sided equation solving), as described above, is similar to instan-
tiation but not identical. Instantiation does not solve an equation but generates a new
expression from an expression, a substitution, and substitution application. Matching

is more complicated than substitution application.

4.2 Instance tries and their implementation

In this section, we will define the instance tries and discuss their implementation, as
presented in this bachelors’ thesis. Key principles of Instances Tries are, first, that
they are rooted trees with a variable branching factor. Furthermore, nodes in instance
tries hold a logical relationship between them and each node n is labeled with an
expression, expr(n). For the mentioned logical relationship between two nodes m and

m'’ of an Instance Trie holds the following:
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o If m' is a child of m, then expr(m') is a strict instance of expr(m).
« If m is the parent of m’, then expr(m) is strictly more general than expr(m’).

« If m, n are siblings and m’ is an instance of both m, n then m' is a child of the

first node. This requires an ordering on expressions in the instance trie.

« Siblings are pairwise incomparable with respect to instantiation and generali-

sation. Sibling order <g makes instance tries unique.

Example 3. We illustrate instance trie indexing with an example set consisting of the

following indexing expressions:

fx,y2), flxb2), flayz), flacz), fla,b,z), f(b,b,z), flay,c).

The following tree was produced by inserting each of these expressions into the index.

f(x,y,2)

f(x,b,2) fla,y,2) fla,c,2)
/\ ‘
fla,b,z) f(b,bz) flayc)

Figure 6: Instance Trie

Let’s take the example tree from figure 1 and run the query f(z,b,z).

The results will be the following:
« nodes f(x,y,z) and f(x,b,z) are strictly more general than the query
« nodes f(a,b,z), f(b,b,z) and f(a,y,z) are only unifiable with the query
« nodes f(a,y,c) and f(a,c,z) are not unifiable with the query
Apart from the three orthogonal primitives mentioned above in the example there

are 2 more, namely strict instance and variant. Let’s consider two examples for the

above-mentioned definitions. Let u,v and x,y variables and a,b constants:

1. The expression f(a,b) is a strict instance of the expression f(u,v).

2. The expression f(x,y) is a variant of the expression f(u,v).
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5 Performance and measurements

The main contribution of this thesis is the comparison of the two index data structure
implementations mentioned above, substitution trees and instance tries, based on a
supply of real-world benchmarks for indexing. But why do we want to compare these
two term indexing data structures?

As mentioned in the book of Peter Graf "Term Indexing” (Graf 1996:177), substitution
trees not only provide efficient maintenance and retrieval of terms but also of idempo-
tent substitutions. They achieve maximal search speed paired with minimal memory
requirements in various experiments and outperform traditional techniques.
Instance tries, as they are new, could not have been considered in the evaluation of
Peter Graf. As mentioned and explained in the chapter “Instance Tries” at kection 4,
nodes in instance tries, hold a logical relationship between them. Goal of this work, is
to run some tests on both substitution trees and instance tries, analyse and compare
the result and show that instance tries provide better performance than substitution

trees.

5.1 COMPIT (COMParing Indexing Techniques for automated de-

duction)

For benchmarking, COMPIT (COMParing Indexing Techniques for automated deduc-
tion) was used. The main characteristics of COMPIT and reasons for choosing it are

as follows:

« COMPIT provides twenty-nine benchmark tests, corresponding to real runs of

real systems on real problems.

« COMPIT is produced by various theorem provers, which are Vampire, Fiesta

and Waldmeister.

« COMPIT consists of real-life traces made for any requirements of different in-

dexing data structures.

« Index updates (deletions and insertions of terms) are interleaved with (in general

far more frequent) retrieval operations.
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5.2 Test cases

The method used for creating the benchmarks mentioned above for a given prover is
to add instructions making the prover write to a log file a trace each time an oper-
ation on the index takes place, and then run it on the given problem. For example,
each time a term t is inserted (deleted), a trace like +t (resp. -t) is written to the file.
It also need to be mentioned that for retrieval operations search of generalisations is
required. Moreover, it is needed to store the traces along with information about the
result of the operation (e.g., success/failure), which allows detection of cases of incor-
rect behaviour of the indexing methods being tested. Ideally, there should be enough
disk space to store all traces (possibly in a compressed form) of the whole run of the
prover on the given problem (if the prover terminates on the problem; otherwise it
should run at least for enough time to make the benchmark representative for a usual

application of the prover).

The following is an extract from a benchmark file generated by Waldmeister from the
TPTP problem LCL109-2. Comments have been added by the authors of the COMPIT

benchmarking suite.

a/2 # each benchmark file starts with the
b/0 # signature symbols with respective arities
c/1

?ab0 # query term a(b,x0), ”?” signals failure
?b # query term b
+ab0  # insert term a(b,x0) to the index

»)»

lab5 # query term a(b,x5), ”!” signals success

-accbb  # delete term a(c(c(b)),b) from index

Table 1: An example benchmark file from COMPIT

5.3 Implementation

The main part of the evaluation process is to test a given implementation of indexing
on such a benchmark file, using the implementation of the COMPIT-parser. This im-

plementation provides operations for querying and updating the indexing data struc-
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ture. The parser first reads the traces, storing them in main memory. After that, every
line from the benchmark file is read using PEST grammar. The operations (insertion,
deletion, search) are parsed into actions and all terms read from the benchmark file
are translated into expressions. The parser provides a translation function for cre-
ating expressions for operations to be performed using the given implementation of
indexing. Finally, the actions accompanied by the translated terms are applied on the
indexing data structure. In order to avoid overheads and inexact time measurements
due to translations and reading terms from the disk, the evaluation process first reads
the whole benchmark file and then time measurement is switched on as the corre-
sponding sequence of operations is being called. After the final tree has been created
and the success or failure of a search operation has been verified, time measurement

is switched off.

5.4 Runtime measurements

In order to get a concrete analysis of both term indexing data structures, the runtime
of every operation (insertions, deletions, successful searches and failed searches) was
measured at the main parts of the respective indexing data structures, as well as the
number of unifications and generalisations that occurred for each. Plots were also
generated showing the whole procedure of running these benchmarks on the substi-
tution trees and instance tries. The figures below represent the final results of running
the benchmarks, using both the substitution trees and instance tries as an indexing
technique. The analysis of these results and the conclusion of this work can be found
in the chapter “Analysis and Conclusion” in kection 7.

6 Code and data

Alarge part of the work behind this thesis involved writing the source code for the var-
ious algorithms described. The implementation consists of the delete and join meth-
ods, as well as their tests for the substitution-trees. A big part of the implementation
was also the COMPIT-parser and of-course the MSCG algorithm both for terms and
substitutions and the associated tests. This work was done with the help and guid-
ance from my supervisor Thomas Prokosch. Rather than including the code in this
thesis we decided to make it available for download on the Internet. The various

parts of the code and their state of development are listed in Gitlab of the PMS unit at
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(https://gitlab.pms.ifi.lmu.de/loglang).

7 Analysis

In this chapter some of the results from running the benchmarks on the substitution
trees and instance tries are presented and a summary of the observations is given.
The bar charts represent the average time in ts needed to run every operation both
in substitution trees and instance tries. On the y-axis the time per operation is shown
and on the x-axis on the left the instance tries and on the right the substitution trees.
In this manner, we can compare the performance of the two data structures. The line
charts represent the nodes searched per operation in relation to the time in s need

to run all the operations from the benchmark.

1,000 |- 962.82 -
800 - a
& 0o insertions
% 600 | 54575 57415 )
3. 488 T i deletions
g 10 failed searches
o 400 | all
= B successful searches
0 232.88
200 |- 132.20 173.55
soff] [
0 [ L [ | [ _
T T
Instance tries Substitution trees

Figure 7: Results - LCL109-2.Wald

Figure 7 shows the results of running the benchmark LCL109-2.Wald on instance
tries and substitution trees. It can be observed that the update operations on average
are running slower on the instance tries than on the substitution trees, whereas the
retrieval operations have almost the same runtime on both.

Figure 8 shows the plot of running the benchmark LCL109-2.Wald on instance tries
up and substitution trees down. The points labeled in green are the failed searches,
the purple ones are successful searches, the brown ones are insertions and the pink
ones indicate deletions.

Looking at Figure 8 for the instance tries, it can be observed that insertions and suc-
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Figure 8: LCL109-2.Wald - Plots

cessful search operations seem to require a logarithmic time to finish running. Fur-
thermore, if an expression is searched in the tree but not found the majority if not all
the nodes of the tree need to be searched. The insertions, on the other hand, don’t

need to search the whole tree to find the position where the expression has to be in-

serted.
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On the other hand, looking at the plot of the substitution trees, only the failed and
successful searches can be observed. This is due to the fact that the update operations
don’t need to search many nodes in the substitution trees, whereas the retrieval op-
erations reach until 500 nodes. From this figure it can be concluded that the retrieval

operations in substitution trees require a logarithmic time.
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Figure 9: Results - GRP024-5.Wald

Figure 9 presents the results of running the benchmark GRP024-5Wald on in-
stance tries and substitution trees. It can be observed that the insertions and failed
searches have a very similar runtime on the instance tries than on the substitution
trees, whereas the successful searches and especially the deletions run much slower
on substitution trees. This indicates that further work needs to be done to be able to
identify the exception in the deleting operations.

Figure 10 shows the plot of running the benchmark GRP024-5Wald on instance
tries up and substitution trees down. The points labeled in green are the failed searches,
the purple ones are successful searches, the brown ones are insertions and the pink
ones indicate deletions. A similar pattern can be again observed as in the last example.

Figure 11 was produced by running the benchmark LAT009-1.Wald on instance
tries and substitution trees. We can draw the following conclusions: First, the in-

sertions need a bit more time on instance tries than on substitution trees, whereas
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the deletions run slower on substitution trees than on instance tries. The numbers
are very close. The update operations run significantly slower on instance tries. It
is obvious that the performance of instance tries depends greatly on the unification

algorithm used.

Figure 12 presents the plot of running the benchmark LAT009-1.Wald on instance
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Figure 11: Results - LAT009-1.Wald
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tries up and substitution trees down. The points labeled in green are the failed searches,
the purple ones are successful searches, the brown ones are insertions and the pink
ones indicate deletions. It can be observed that the points presenting update opera-
tions are positioned almost at the same place at both plots. Retrieval operations have
again a logarithmic growth on instance tries but a different pattern on substitution
trees.

The reason why on this chart of the substitution trees we can observe update and re-

trieval operations and in the other ones not, is because in this example the retrieval
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operations search until 90 nodes of the tree, just like the update operations.



27

1,067.84
1,000 | 937.36 a
] 838.09
a, 800 - ] N
o 0o insertions
w
3600 - 0o deletions
k= 447 .64 460.437. 10 failed searches
g 400 |00 successful searches
= 238.49 238.2
0 [ L [ _
T T
Instance tries Substitution trees

Figure 13: Results - RNG028-5.Wald

The chart shown in Figure 13 was produced by running the benchmark RNG028-
5.Wald on instance tries and substitution trees. The interesting observation is that
the successful searches in this example need far less time on instance tries than on
substitution trees. The deletions need approximately the same time and insertions and
failed searches run slower on instance tries. This is also a very positive result for the
instance tries as with a bit higher average time per inserting operation, instance tries
provide much faster search results. Furthermore, by using instance tries the results
are more predictable, while the trees are also smaller, with fewer nodes.

Figure 14 presents the plot of running the benchmark RNG028-5.Wald on instance
tries up and substitution trees down. The pointslabeled in green are the failed searches,
the purple ones are successful searches, the brown ones insertions and the pink ones
indicate deletions. It can be observed that on the upper plot of the instance tries the
points presenting the successful searches are places mainly at the bottom part of the
chart. This is because as mentioned before, in this example the successful searches on
instance tries need significantly less time and search fewer nodes than on substitution
trees. On the substitution trees, on the other hand, we can observe the same growth

as in the first example.

8 Conclusion

From the examples mentioned before and in general after running several benchmarks

on both instance tries and substitution trees following conclusions can be drawn:
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Insertions and successful search operations seem to require logarithmic time to run on
instance tries. The same can be observed for the substitution trees but for the retrieval
operations, not insertions.

Furthermore, inserting operations on instance tries are usually slower than inserting

operations on substitution trees. This was expected as instance tries rely upon unifi-
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cation; work to speed up the unification algorithm used is ongoing.

Moreover, a very important feature of instance tries is that every node is inserted at
a certain position in the index. Every child node is an instance of its parent node and
is placed in the trie based on the variables and constants that the expression in the
node contains. This makes the inserting operations slower, as the exact position for
every expression should be located in the trie. On the other hand due to this ordering,
instance tries provide faster retrieval of expressions. Described in more detail, the
term indexing data structures were developed to provide easier and faster retrieval of
expressions. At this point, there is no need to search a whole list for example to re-
trieve an expression. Instance tries were built to enhance even more the performance
of retrieval operations, but require a slightly higher insertion time. In particular, they
offer predictability and therefore a "sacrifice” needs to be made in average update op-
eration time. This is a positive characteristic of instance tries as there is major need
for faster retrievals in term indexing data structures than for faster update operations.
Retrieval operations on instance tries are competitive with the ones on substitution
trees despite using an unoptimised unification algorithm (Robinson 1976) and relying
on expressions, not substitutions, as the core data structure. Instance tries with this
unification algorithm can compete substitution trees, which in various experiments
present low average retrieval time. This outcome is positive for the new term index-
ing data structure as the improvement of the unification algorithm used is expected
to lead in enhancement of performance and even better results.

According to the conducted results, substitution trees sometimes outperform instance
tries. However, as mentioned already, instance tries still rely on expressions and not
substitutions as their core data structure and use an exponential unification algorithm.
Runtime differs greatly between various theorem provers: Waldmeister runs fast for
both instance tries and substitution trees, Fiesta runs fast on instance tries and slowly
on substitution trees and Vampire runs slowly on both. For this project examples
were derived from Waldmeister theorem prover. The benchmarks consisted of smaller
terms than the ones in Fiesta theorem prover. The two term indexing data structures

have been tested with benchmarks from the theorem provers Fiesta and Waldmeister.
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9 Future work and suggestions

This thesis promoted the overall work until a certain point leading the way for further
investigation. In this section a few suggestions for future work will be presented.

Firstly, more tests need to be run on both instance tries and substitution trees to get
more results in order to draw reliable conclusions. Furthermore, instance tries need
to be implemented not only using expressions but also substitutions as their core data
structure. Moreover, apart from the performance, the memory requirements need to
be measured as well, with running benchmarks on both instance tries and substitution
trees. Lastly, although the benchmarks from COMPIT provide reliable results, it would
be advisable to run different benchmarks, where update operations search not only for

generalisations, but for variants, instances or terms that unify with the given term.
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