
Augmenting Model-Based Instantiation with
Fast Enumeration

Lydia Kondylidou1, Andrew Reynolds2, and Jasmin Blanchette1

1 Ludwig-Maximilians-Universität München, Munich, Germany
{l.kondylidou,jasmin.blanchette}@lmu.de

2 The University of Iowa, Iowa City, United States
andrew.j.reynolds@gmail.com

Abstract. We introduce MBQI-Enum, an approach that extends
model-based quantifier instantiation (MBQI) with syntax-guided synthe-
sis (SyGuS) techniques. Our approach targets first-order theories with-
out well-established quantifier instantiation techniques and higher-order
quantifiers that can benefit from instantiations with λ-terms. By incor-
porating a SyGuS enumerator, it generates a broader set of candidate
instantiations, including identity functions and terms containing unin-
terpreted symbols, thereby improving the effectiveness of MBQI.

1 Introduction

Satisfiability modulo theories (SMT) solvers combine a Boolean satisfiability
(SAT) solver with decision procedures for interpreted theories. Several SMT
solvers, including Bitwuzla [19], Boolector [8], cvc5 [2], veriT [7], and Z3 [18],
also support quantifiers via Skolemization and instantiation. With complete in-
stantiation strategies, SMT solvers offer a semidecision procedure for first-order
logic with theories. SMT has also been partly extended to higher-order logic [4].

One successful instantiation strategy is model-based quantifier instantiation
(MBQI) [11]. Briefly, it iteratively refines a candidate model constructed from
the quantifier-free part of the problem. This model guides the generation of new
terms for instantiating quantifiers, reducing the search space. MBQI is complete
for certain fragments and tends to generate small models for satisfiable problems.
But it also has some limitations: First, MBQI instantiates quantifiers only with
terms that denote values in a theory. In particular, it does not consider the
problem’s uninterpreted symbols when creating instantiations, leading it to miss
some useful instantiations. Second, for higher-order problems, MBQI cannot
generate function terms that return an argument, such as the identity λx. x.

Another instantiation strategy, which addresses these limitations, is syntax-
guided instantiation (SyQI) [20]. It constructs a grammar for each universally
quantified variable according to its type and uses enumerated terms derived from
the grammar as instantiations. Its main weakness is that although it is model-
based like MBQI, it uses a less scalable approach to refining models that centers
around syntactic constraints.

2 L. Kondylidou et al.

In this paper, we propose a new strategy, MBQI-Enum, that combines the
strengths of MBQI and SyQI. Specifically, our strategy augments the set of in-
stantiations created from the MBQI model with instantiations generated by a
syntax-guided synthesis (SyGuS) grammar. It incorporates uninterpreted sym-
bols gathered from the problem. For higher-order problems, it also considers
λ-abstractions as potential instantiations. In this way, we exploit the fast model-
finding capabilities of MBQI and the diversity of terms considered by SyQI.

Our work shares some similarities with Preiner et al. [23], but their approach
was limited to selected first-order theories and did not handle higher-order logic.
Our approach is resolutely pragmatic and does not aim at completeness.

As an example where λ-terms are needed, consider the unsatisfiable problem
consisting of the axiom ∀z.∃x,y. z x y ̸= x, where z ranges over binary functions.
Running cvc5 with strategies such as MBQI and higher-order E-matching [4]
leads the solver to give up early. By contrast, with our strategy, cvc5 immediately
finds a contradiction based on the substitution {z 7→ λx, y. x}. Indeed, if we
instantiate z with λx, y. x in the axiom and β-reduce, we obtain x ̸= x.

We implemented MBQI-Enum in cvc5. Our empirical evaluation finds that
the strategy increases the number of solved problems for a benchmark suite con-
sisting of various first-order SMT-LIB files by a noticeable margin. Our approach
is especially useful to solve unsatisfiable problems involving theories without well-
established quantifier instantiation techniques. We can also report substantial
gains on higher-order TPTP benchmarks. Our source code, along with instruc-
tions for reproducing the experiments, is available as an artifact.

2 Preliminaries

Our work relies on the following pillars: higher-order logic, SMT with quantifiers,
MBQI, and SyQI.

Higher-Order Logic. Monomorphic higher-order logic [1,12], also called sim-
ple type theory [9], generalizes classical first-order logic by allowing quantifica-
tion over functions. The syntax distinguishes between types and terms. Types τ
are either base types κ or applications of the function arrow → to two types:
τ1 → τ2. The type of Booleans is denoted by o. The term language is based on
Church’s simply typed λ-calculus. Terms are syntactically equal modulo α-, β-,
and η-conversions—for example, (λx. x) c is syntactically equal to c. A term of
type o is called a formula; a function symbol returning o is called a predicate
symbol. We let x̄ stand for x1, x2, . . . , xn, where n ≥ 1.

SMT with Quantifiers. Traditionally, SMT solvers work on problems in first-
order logic, but they have partly been extended to higher-order logic [4], and
in this paper we consider both first- and higher-order problems. SMT solvers
that support quantifiers typically do so via a combination of Skolemization and
instantiation: Universal quantifiers occurring negatively can be Skolemized; uni-
versal quantifiers occurring positively are instantiated heuristically; and existen-
tal quantifiers are expressed in terms of ∀. To simplify the presentation, we will

Augmenting Model-Based Instantiation with Fast Enumeration 3

Algorithm 1 Main SMT loop
1: procedure smt-loop(F)
2: find a set of literals L where
3: — L |=p F , where L’s atoms are a subset of atoms(F)
4: — L can be partitioned into (E,Qp, Qn), where
5: — E is ground and T -satisfiable
6: — Qp consists of universally quantified atoms
7: — Qn consists of negated universally quantified atoms
8: if no such L exists then
9: return unsat

10: A← instantiation-round(Qp, E) ∪ skolemization-round(Qn)
11: if A = ∅ then
12: return sat
13: else
14: return smt-loop(F ∪A)
15: procedure instantiation-round({q1, . . . , qn}, E)
16: I ← ∅
17: for each i ∈ {1, . . . , n} do
18: I ← I ∪ {qi =⇒ qiσ | σ ∈ insts(qi, E)}
19: return I

20: procedure insts(qi, E)
21: return a set of substitutions for qi based on (qi, E)

22: procedure skolemization-round({¬q1, . . . ,¬qn})
23: K ← ∅
24: for each i ∈ {1, . . . , n} do
25: K ← K ∪ {¬qi =⇒ ¬qiσk,i}, where σk,i maps to Skolem constants for qi

26: return K

assume that formulas are in a normal form where possibly negated ∀-quantifiers
all appear in a cluster at the top level—e.g., ∀x, y. ¬∀z. p(x, y, z).

Let T be a theory for a set of interpreted symbols, and let F be the input
formula over T . The goal is to find a model of F or derive a contradiction. If F
does not contain quantifiers, the quantifier-free part of the SMT solver searches
for a set L of literals that propositionally satisfies F . If such an L exists, F is
T -satisfiable (i.e., satisfiable with respect to T); otherwise, F is T -unsatisfiable.

If the formula F contains quantifiers, the quantifier-free solver cannot be
directly applied. In the SMT solver’s main loop, presented in Algorithm 1, the
SMT solver tries to find a set L of literals whose atoms come from F and that
propositionally satisfies F . Briefly, L is partitioned into a set E of ground literals
and two sets of quantified literals, Qp and Qn. The ground literals within E must
be T -satisfiable, Qp consists of formulas of the form ∀x̄. ϕ, and Qn consists of
formulas of the form ¬∀x̄.ϕ. If the solver is unable to find such an L, it concludes
that the formula F is T -unsatisfiable.

On the other hand, if a set L of literals is found, new lemmas A are gen-
erated through the instantiation and Skolemization rounds. The instantiation

4 L. Kondylidou et al.

round generates instantiation lemmas—that is, lemmas of the form qi =⇒ qiσ—
from the sets Qp and E. For each qi ∈ Qp, an instantiation strategy computes
substitutions σ for every top-level variable in qi mapping them to terms. The
Skolemization round generates Skolemization lemmas from the set Qn—that is,
lemmas of the form ¬qi =⇒ ¬qiσj,i, where σj,i instantiates every top-level vari-
able in qi with a Skolem constant. (We abuse notation and write (∀x̄. ϕ)σ to
mean ϕσ, syntactically conflating quantifier instantiation and substitution.) The
lemmas are then added to the original formula F , and the SMT loop is called
recursively. On line 12 of Algorithm 1, we assume that the instantiation strategy
denoted by insts is model-sound, meaning that if insts returns an empty set of
substitutions, it indicates that the formula F is T -satisfiable.

We now define the instantiation strategy insts starting with a naive ap-
proach. Subsequently, we will introduce more advanced techniques, including
MBQI and SyQI, followed by our strategy, MBQI-Enum. These strategies can
replace the naive approach to improve the solver’s efficiency.

Definition 2. An instantiation strategy takes as input a set of ground terms E
and a quantified formula q of the form ∀x̄. ϕ, and outputs a set of grounding
substitutions {σ1, . . . , σm}, where the variables mapped by σi are exactly the
variables in x̄ for each i ∈ {1, . . . ,m}.
Example 3. Let a : Int and p : Int → Bool . Let F be the formula (∀y. p y) ∧
¬ p a, where y : Int . In the SMT loop, the sets E = {¬ p a}, Qp = {∀y. p y},
and Qn = ∅ are defined. The naive instantiation strategy produces substitutions
mapping y to terms from E of the same type as y, as shown below:

q ∈ Qp insts(E, q)

∀y. p y {{y 7→ a}}

The instantiation lemma (∀y.p y) =⇒ p a is added to F . Now, the quantifier-free
solver finds a contradiction.

The most widely used strategy for quantifier instantiation is E-matching [17].
This is a heuristic and typically incomplete technique that choses substitutions
by matching ground terms with patterns. Over the past decade, SMT solvers
have been extended with more sophisticated approaches. Conflict-based instan-
tiation [30] is another incomplete technique that attempts to find a single in-
stantiation that would induce a ground conflict, before resorting to E-matching.
MBQI [11] is a technique for finding instantiations that refute a candidate model,
and is typically run when E-matching saturates. Enumerative instantiation [24]
is an alternative to MBQI that focuses on finding instantiations over the current
set of ground terms that are not entailed in the current context.

Quantifier instantiation strategies that target specific theories have also been
proposed. Counterexample-guided instantiation [27] is complete for specific the-
ories with quantifiers that admit quantifier elimination, such as linear arithmetic
and bitvectors. SyQI [20] is a more general purpose strategy that uses syntax-
guided synthesis for enumerating instantiations and is effective for theories that
otherwise do not have well-established instantiation strategies.

Augmenting Model-Based Instantiation with Fast Enumeration 5

Algorithm 4 The MBQI strategy
1: procedure insts_mbqi(q, E)
2: assume q is ∀y1, . . . , yn. ϕ
3: let M be a model of E
4: let M ′ be a model of ¬ϕM

5: if M ′ does not exist then
6: return ∅
7: return {{y1 7→ yM′

1 , . . . , yn 7→ yM′
n }}

MBQI. MBQI iteratively refines a candidate model M constructed from the
quantifier-free part of the problem. As shown in Algorithm 4, the strategy re-
places function symbols in the body ϕ of the quantified formula with their in-
terpretation in M . If ¬ϕM is T -satisfiable, this means that a model M ′ exists,
and the strategy returns the substitution {y1 7→ yM

′

1 , . . . , yn 7→ yM
′

n }, where
yM

′

i denotes the interpretation for the variable yi in M ′.

Example 5. Let a : Int and p : Int → Bool . Let F be the input formula

(∀y. p y) ∧ 0< a< 2 ∧ ¬ p a

where y : Int . In the SMT loop, our set of literals L is partitioned into E =
{0 < a < 2, ¬ p a}, Qp = {∀y. p y}, and Qn = ∅. MBQI builds a model M
from E—assume aM = 1 and pM = λx. x ̸= 1. It then considers the negation of
the body of the quantified formula in Qp under the interpretation M , which is
¬ (λx. x ̸= 1) y, which simplifies to y = 1 and has a model M ′, where yM

′
= 1.

Thus, MBQI generates the substitution {y 7→ 1}, from which the instantiation
lemma (∀y. p y) =⇒ p 1 is constructed and added to F . Now, the quantifier-free
solver finds a contradiction.

Example 6. Let f : Int → Int → Bool . Let F be the higher-order formula

∀x, y. y x ̸= y (f x)

where x : Int and y : Int → Int . The set L is partitioned into sets E = ∅,
Qp = {∀x,y.y x ̸= y (f x)}, and Qn = ∅. MBQI constructs a model M for E such
that fM = λz. 0. It then considers the negation of the body of the quantified
formula in Qp under the interpretation M . This is ¬ y x ̸= y ((λz. 0) x), which
simplifies to y x = y 0 and has a model M ′, where xM ′

= 0 and yM
′
= λz. 0.

Thus, it generates the substitution {x 7→ 0, y 7→ λz. 0} based on the candidate
model. Now, the quantifier-free solver finds a contradiction. Indeed, if we
instantiate x, y with this substitution and β-reduce, we obtain 0 ̸= 0.

SyQI. SyQI uses SyGuS to choose instantiation terms. It aims to synthesize a
term t for a variable x in a given formula ∀x. p x such that ¬ p t holds. Each
quantified variable is associated with a SyGuS grammar. The main advantage of
SyQI is that, unlike MBQI, it does not require theory-specific quantifier instan-
tiation procedures. The only parts that depend on the theory are the grammar
and the T -satisfiability check for the generated instances.

6 L. Kondylidou et al.

3 The Method

The core idea behind our new instantiation strategy, MBQI-Enum, is to integrate
a SyGuS enumerator within MBQI, thereby enabling the generation of a broader
set of candidate instantiations for quantified variables.

Instantiation Strategy. Instead of restricting instantiations to ground terms
derived from the current MBQI model, our strategy uses a SyGuS grammar
to produce additional candidate instantiations. This grammar is not limited to
ground terms with the types of the quantified variables; rather, it incorporates
uninterpreted symbols gathered from the entire formula. As a result, it generates
a more extensive and comprehensive language of terms.

For each quantified variable in a formula, our strategy performs iterative term
enumeration. It generates candidate substitutions from the extended grammar
and tests each enumerated term within the formula. For each enumerated term,
the strategy tries to apply it as an instantiation for the quantified variable. For
higher-order problems, it also considers λ-abstractions as candidate instantia-
tions. If the instantiation fails, our technique continues to the next candidate
until a suitable instantiation is found or all possibilities are exhausted.

When none of the candidate instantiations derived from the SyGuS enumer-
ation prove successful, MBQI-Enum reverts to the original MBQI model-derived
instantiation. This fallback mechanism ensures that our strategy can in principle
solve any problem that MBQI can solve.

Our initial motivation for developing MBQI-Enum was to increase cvc5’s
success rate on higher-order problems. Nevertheless, incorporating uninterpreted
symbols gathered from the entire formula allows our approach to extend its
applicability to first-order problems using various SMT theories.

Our approach is presented in Algorithm 7. The strategy starts by invoking
MBQI to generate a set of initial substitutions Σ, since the goal is to postpro-
cess the substitutions generated by MBQI using a SyGuS enumerator. If Σ is
empty, the strategy immediately returns an empty set, indicating that no valid
instantiation could be found. Otherwise, it proceeds by initializing Σ to contain
a single substitution σ. Next, it generates additional substitutions by extending
the current one using the SyGuS enumerator.

Our strategy then iterates over the quantified variables yi in the formula q
to instantiate. For each variable, it constructs a grammar Gi used to guide the
enumeration of candidate terms for substituting yi. The enumeration starts by
generating terms from Gi in a sequential manner. For each term e, the strategy
creates a new substitution σ′ by mapping yi to e in the current substitution
σ. It then checks whether the negation of the body ϕ under σ′ is T -satisfiable.
This check serves to maintain the invariant that the negation of the body of the
quantified formula, after applying the current substitution, remains T -satisfiable.
In other words, we want to ensure that the generated instantiation refutes the
current model (cf. line 4 of Algorithm 4). If it does, σ is updated to σ′, and the
strategy moves on to the next variable. Once all variables have been considered,
the strategy returns the refined substitution σ.

Augmenting Model-Based Instantiation with Fast Enumeration 7

Algorithm 7 The MBQI-Enum strategy
1: procedure insts_mbqi_fast_sygus(q, E)
2: assume q is ∀y1, . . . , yn. ϕ
3: let Σ← insts_mbqi(q, E)
4: if Σ = ∅ then
5: return ∅
6: else
7: let Σ← {σ}
8: for each i ∈ {1, . . . , n} do
9: let Gi ← choose_grammar(q, yi)

10: for each j ∈ {1, 2, . . . } do
11: let e← get_enum_term(Gi, j)
12: if e does not exist then
13: break
14: σ′ ← σ[yi 7→ e]
15: if ¬ϕσ′ is sat then
16: σ ← σ′

17: break
18: return σ

19: procedure choose_grammar(q, yi)
20: let F be the original input formula
21: let S ← ∅
22: if option_syms_global then
23: S ← S ∪ symbols(F)

24: if option_syms_local then
25: S ← S ∪ symbols(q)
26: if option_ext_vars then
27: S ← S ∪ {yi+1, . . . , yn}
28: return grammar that generates terms of the same sort as yi over symbols in S

Choice of Grammar. Term enumeration is based on a SyGuS grammar.
Choosing an appropriate grammar for each quantified variable is crucial for se-
lecting the correct instantiations. Our strategy builds a set S of symbols based on
three Boolean options: syms_global , ext_vars, and syms_local . These options
specify which symbols from the formula F will be included when constructing
the SyGuS grammar.

If no options are enabled, the set S is empty. If syms_global is enabled, all
function symbols from the entire formula F are contained in S. If ext_vars is
enabled, S is augmented with bound variables from the formula q that are not yet
instantiated. Finally, if syms_local is enabled, the set S also contains function
symbols specifically from q. Based on these settings, our approach constructs a
grammar that generates terms over the symbols in S, while ensuring that these
terms are well-typed with respect to the type of yi.

For higher-order variables, thanks to η-conversion, it is sufficient to consider
only grammars that generate λ-abstractions. The variables bound by these λ-

8 L. Kondylidou et al.

abstractions are considered terminal symbols of the grammar that generates the
abstraction’s body. For example, for a function variable whose arity is n and
whose arguments are the same base type as its return type, we add grammar
rules of this form:

A ::= λx1, . . . , xn. B

B ::= x1 | · · · | xn

Moreover, there will be additional rules for B and possibly for other nonterminal
symbols of the grammar. This ensures that any λ instantiations are formed by
enumerating the body B over the bound variables x1, . . . , xn.

Example 8. Let a : Int and p : Int → Bool . Let F be the input formula

(∀y. ¬ p (y a)) ∧ p a

where y : Int → Int . The set L is partitioned into E = {p a}, Qp =
{∀y.¬ p (y a)}, and Qn = ∅. MBQI generates substitutions such as {y 7→ λx. 0},
{y 7→ λx. 1}, As a result, the solver does not terminate. In contrast, MBQI-
Enum augments these instantiations based on enumeration. On the first iteration
of the SMT loop, MBQI-Enum considers the set Σ = {{y 7→ λx. 0}} consist-
ing of the first substitution generated by MBQI. Our strategy first constructs a
grammar for y. The set of symbols S is empty. The grammar is

A ::= λx. B
B ::= x | 0 | 1 | B + B | B − B | ite(B,B,B)
C ::= true | false | B = B | B ≤ B | ¬ C | C ∧ C | C ∨ C

Next, MBQI-Enum enumerates terms derived from the grammar and creates
the substitution σ′ = {y 7→ λx. x} by updating σ with the enumerated term
λx. x from the grammar. Our strategy then checks whether the negation of the
body of the quantified formula after applying σ′ is T -satisfiable. Indeed, if we
instantiate y with λx. x and β-reduce, we obtain p a, which is T -satisfiable. The
substitution σ is then updated to {y 7→ λx. x} and returned. Back in the SMT
loop, the instantiation lemma (∀y. ¬ p (y a)) =⇒ ¬ p a is added to F . Now, the
quantifier-free solver finds a contradiction.

The candidate substitutions generated by MBQI-Enum (M) are listed below:

Iter. q ∈ Qp E M(q, E) New E

1 ∀y. ¬ p (y a) {p a} {{y 7→ λx. x}} {p a,¬ p a}

The first column shows the number of the SMT loop iteration. The second
column shows the quantified formula q and the third column shows the set E
of ground literals before every iteration. The fourth column shows the possible
selection of substitutions of y that are considered with MBQI-Enum and the
fifth column shows the set E after every iteration.

Augmenting Model-Based Instantiation with Fast Enumeration 9

In this example, MBQI-Enum was able to terminate in the first iteration,
since it found a substitution for y that immediately leads to a refutation, whereas
MBQI considers a repeating pattern of instantiations that leads to a timeout.

Another useful candidate substitution would have been {y 7→ λx. a}. MBQI-
Enum would have found this substitution as well if it had not terminated after
finding {y 7→ λx. x}.

In an informal, preliminary evaluation on higher-order TPTP benchmarks,
we determined that the best-performing configuration enables ext_vars and
syms_local and leaves syms_global disabled. The following examples are based
on this setup.

Example 9. Let p : Int → Bool and f : Int → Int . Let F be the input formula

∀y. ¬∀z. ¬ p (y z) ∨ p (f z)

where y : Int → Int and z : Int . The set L is partitioned into sets E = ∅,
Qp = {∀y. ¬∀z. ¬ p (y z) ∨ p (f z)}, and Qn = ∅. MBQI generates substitutions
such as {y 7→ λx. 0}, {y 7→ λx. 1}, As a result, the solver does not terminate.
In contrast, MBQI-Enum adds the first substitution generated by MBQI, {y 7→
λx. 0}, to the set Σ and proceeds to postprocess it. Our strategy first constructs
a grammar for y using the function symbols from q. The set of symbols used is
S = {f, p}. The grammar is

A ::= λx. B
B ::= x | f B | 0 | 1 | B + B | B − B | ite(C,B,B)
C ::= true | false | B = B | B ≤ B | p B | ¬ C | C ∧ C | C ∨ C

In the first iteration, MBQI-Enum generates the substitution σ = {y 7→
λx. x}. The instantiation lemma (∀y. ¬∀z. ¬ p (y z) ∨ p (f z)) =⇒ ¬∀z. ¬ p z ∨
p (f z) is added to F . The set L is now partitioned into E = ∅, Qp = {∀y. ¬∀z.
¬ p (y z)∨p (f z)}, and Qn = {¬∀z.¬ p z∨p (f z)}. Next, the quantifier in Qn is
Skolemized. The Skolemization lemma (¬∀z.¬ p z∨p (f z)) =⇒ p sk1∧¬ p (f sk1)
is added to F . As a result, the set E is updated to {p sk1,¬ p (f sk1)}.

In the next iteration, the substitution σ is modified to {y 7→ λx. f x}, in-
corporating the enumerated term λx. f x from the grammar. The instantiation
lemma (∀y. ¬∀z. ¬ p (y z) ∨ p (f z)) =⇒ ¬∀z. ¬ p (f z) ∨ p (f z) is then added
to F . After Skolemization, the set E is augmented with {p (f sk2),¬ p (f sk2)}.
The quantifier-free solver finds a contradiction. Indeed, if we instantiate y with
λx. f x in F , β-reduce, and Skolemize z, we obtain p (f sk2) ∧ ¬ p (f sk2).

The candidate substitutions generated by MBQI-Enum (M) are listed below:

Iter. q ∈ Qp E M(q, E) New E

1 ∀y. ¬∀z. ¬ p (y z) ∨ p (f z) ∅ {{y 7→ λx. x}} {p sk1,¬ p (f sk1)}
2 ∀y. ¬∀z. ¬ p (y z) ∨ p (f z) {p sk1,¬ p (f sk1)} {{y 7→ λx. f x}} {p sk1,¬ p (f sk1)

p (f sk2),¬ p (f sk2)}

In this example, our strategy terminated in the second iteration, whereas MBQI
would lead the solver to time out.

10 L. Kondylidou et al.

Example 10. In this example, our strategy is run with and without the syms_
global option enabled. Let u be an uninterpreted sort, and let a : u and b : u.
Let F be the input formula

(∀x, y, z. x y = x z) ∧ a ̸= b

where x : (u → u) → u, y : u → u, and z : u → u. The set L is partitioned
into E = {a ̸= b}, Qp = {∀x, y, z. x y = x z}, and Qn = ∅. MBQI-Enum fails
to construct a grammar for a variable x, y, or z that has any terms of the same
type as the variable. As a result, it cannot generate any substitutions, and the
solver gives up early. In contrast, when the syms_global option is enabled in
MBQI-Enum, function symbols from the entire formula F are used to construct
a grammar for each variable x, y, and z. For these variables, the set of symbols
is {a, b}. The grammar for x follows:

A ::= λw. B
B ::= w B | a | b | ite(C,B,B)
C ::= true | false | B = B | ¬ C | C ∧ C | C ∨ C

(Since w is of unary function type, we pass an argument corresponding to the
nonterminal B in the second grammar rule.) The grammar for y and z follows:

A ::= λw. B
B ::= w | a | b | ite(C,B,B)
C ::= true | false | B = B | ¬ C | C ∧ C | C ∨ C

Our strategy then enumerates terms derived from the grammar and builds the
substitutions {x 7→ λw. w b}, {y 7→ λw. w}, and {z 7→ λw. a}. The instantiation
lemma (∀x, y, z. x y = x z) =⇒ b = a is added to F . Now, the quantifier-free
solver finds a contradiction. Indeed, if we instantiate x with λw. w b, y with
λw. w, and z with λw. a in F and β-reduce, we obtain a = b ∧ a ̸= b.

The candidate substitutions generated by MBQI-Enum (M) are listed below:

Iter. q ∈ Qp E M(q, E) New E

1 ∀x, y, z. x y = x z {a ̸= b} ∅ {a ̸= b}

The same information is provided for MBQI-Enum with the option
syms_global enabled (M+g) below:

Iter. q ∈ Qp E (M+g)(q, E) New E

1 ∀x, y, z. x y = x z {a ̸= b} {{x 7→ λw. w b},
{y 7→ λw. w},
{z 7→ λw. a}}

{a ̸= b, a = b}

In this example, MBQI-Enum with syms_global was able to terminate in the first
iteration, since it found a substitution for the quantified variables that leads to
a refutation. By contrast, MBQI-Enum does not terminate since it cannot build
any substitutions.

Augmenting Model-Based Instantiation with Fast Enumeration 11

4 Implementation and Heuristics

We implemented MBQI-Enum as an extension of cvc5’s implementation of
MBQI. Our strategy is invoked after the current MBQI strategy returns a can-
didate instantiation (line 3 of Algorithm 7).

For each variable, our algorithm chooses a grammar (line 9) and initializes a
term enumeration data structure. Since the choice of the grammar is fixed over
the course of solving, the grammar is constructed only once. Our implementation
uses the utility for fast SyGuS enumeration described in Reynolds et al. [26] as
a black box. Since the grammar for each variable is fixed, we can cache the
enumeration and invoke this utility only on line 11 of Algorithm 7, when j is
larger than the number of terms we have generated on a previous run, where we
notice that a term that was skipped in a previous call to this method may be
incorporated into instantiations on later calls.

On line 15 of Algorithm 7, we use cvc5’s ability to call a copy of itself as
a subsolver. As an optimization, this satisfiability check can be avoided if the
query to check simplifies to “true” or “false.”

5 Evaluation

We extensively evaluated our cvc5 implementation of MBQI-Enum both on
higher- and on first-order benchmarks.

Setup. As base configuration, we used our best-performing setup: MBQI-Enum
with the options ext_vars and syms_local enabled by default. We denote this
configuration by cvc5[M].

We first compare the performance of the base configuration against tra-
ditional instantiation techniques: cvc5[e], which uses enumerative instantia-
tion [25]; cvc5[s], which uses SyQI [20]; cvc5[c], which uses counterexample-
guided instantiation [28]; and cvc5[m], which uses MBQI [11].

Additionally, for higher-order problems, we also include a comparison with
the state-of-the-art provers Vampire [16] and Zipperposition [10]. For Vampire,
we used its portfolio mode, while Zipperposition was tested in its so-called “best”
mode, since it does not include a portfolio mode.

Next, we compare the base configuration on first-order benchmarks to two
state-of-the-art SMT solvers: Z3 [18], the only SMT solver aside from cvc5 that
supports all the logics handled by our implementation, and Bitwuzla [19], which
supports only logics without arithmetic.

Finally, we compare the performance of all four MBQI-Enum configurations
on both higher-order and first-order problems. In this evaluation, we toggled
one option at a time: cvc5[M−x] denotes MBQI-Enum with ext_vars disabled,
cvc5[M−L] denotes MBQI-Enum with syms_local disabled, and cvc5[M+g] de-
notes MBQI-Enum with syms_global enabled.

We performed all experiments on a system with a 40x Intel Xeon Silver 4114
processor at 2.20 GHz and 192 GB of RAM using Debian Bookworm as the
operating system. We used a time limit of 60 seconds for each benchmark.

12 L. Kondylidou et al.

Table 1. MBQI-Enum vs. other strategies, Vampire, and Zipperposition on TPTP
TH0 benchmarks

Vampire Zipperposition cvc5[e] cvc5[s] cvc5[m] cvc5[M]

Satisfiable 6 0 72 78 121 129
Unsatisfiable 1757 1499 1643 1304 1637 1670

Total 1763 1499 1715 1382 1758 1799

Unknown 0 0 350 38 127 59
Timeouts 999 1263 697 1342 877 904

Higher-Order Problems. The higher-order part of the experiments was car-
ried out on monomorphic higher-order problems (TH0) from version 9.0.0 of the
TPTP library [31]. The benchmark set consists of 2762 problems. From the 3962
TH0 problems, we excluded 1200 benchmarks that one or more systems could
not parse (e.g., because they use arithmetic).

The results are summarized in Table 1. In this and the following tables,
bold indicates the best-performing system. Notably, our approach achieves the
highest total count of solved benchmarks, surpassing the nearest competitor by
36 solved problems. Overall, it outperforms all other cvc5 strategies as well as
Zipperposition in higher-order logic and solves 87 fewer unsatisfiable problems
than Vampire. Our strategy’s advantage over Zipperposition likely stems from
using Zipperposition’s “best” mode for the evaluation, since it does not include
a portfolio mode. Remarkably, our strategy managed to solve 129 satisfiable
problems, whereas Vampire solved only 6, and Zipperposition none.

The performance of our approach shows a significant improvement over tra-
ditional instantiation techniques, particularly compared with MBQI, which was
previously the best-performing cvc5 configuration for higher-order problems.
Specifically, our strategy successfully solved an additional 41 problems without
any losses. When compared to SyQI, our strategy solved 417 more benchmarks
while also incurring no losses.

Table 2 shows the evaluation of the different configurations of MBQI-Enum
on higher-order problems. We see that all three options are beneficial, but for
syms_global the difference is only two problems. (In our preliminary evaluation,

Table 2. MBQI-Enum configurations on TPTP TH0 benchmarks

cvc5[M] cvc5[M−x] cvc5[M−l] cvc5[M+g]

Satisfiable 129 129 122 129
Unsatisfiable 1670 1665 1655 1672

Total 1799 1794 1777 1801

Unknown 59 65 88 56
Timeouts 904 903 897 905

Augmenting Model-Based Instantiation with Fast Enumeration 13

we had found syms_global to be slightly harmful, which is why we disabled it
by default.)

First-Order Problems. The experiments on first-order problems were con-
ducted on the SMT-LIB benchmarks [5], as of April 2024, focusing on logics
that include quantifiers. We specifically considered logics involving theories such
as floating-point arithmetic, linear and nonlinear arithmetic, and bit vectors.
Overall, we include the logics BV (bit vectors), FP (floating-point arithmetic),
LIA (linear integer arithmetic), LRA (linear real arithmetic), NIA (non-linear
integer arithmetic), NRA (non-linear real arithmetic), and their combinations:
BVFP, BVFPLRA, and FPLRA. We also incorporated the ABV (arrays and
bit vectors) and UFBV (uninterpreted functions with bit vectors). In total, our
benchmark set consists of 21 605 problems.

Table 3. MBQI-Enum vs. other techniques, Bitwuzla, and Z3 on SMT-LIB benchmarks

Library Bitwuzla Z3 cvc5[e] cvc5[s] cvc5[c] cvc5[m] cvc5[M]

SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

ABV 378 47 386 103 21 926 617 234 17 90 790 135 729 157
ABVFP 24 0 29 2 10 3 15 0 13 0 31 0 31 0
ABVFPLRA 32 1 55 3 14 2 18 1 18 2 41 2 42 2
BV 643 5068 547 4993 202 4837 316 4919 439 5195 610 4834 593 5076
BVFP 179 12 163 5 26 12 102 4 106 0 167 4 169 7
BVFPLRA 233 25 203 16 80 25 120 24 111 24 220 24 226 25
FP 135 2179 16 1789 111 1588 149 2034 113 2003 115 2053 116 2222
FPLRA 37 0 24 0 20 0 24 0 22 0 37 0 36 0
UFBV 26 120 41 103 8 103 9 108 8 52 23 83 21 105

Subtotal 1687 7452 1182 6995 378 7469 1208 7299 696 7340 1736 7109 1659 7567

SAT+UNSAT 9139 8177 7847 8507 8036 8845 9226

LIA 140 230 12 170 150 236 150 266 150 167 149 239
LRA 756 1360 468 1117 477 1131 591 1302 545 1123 557 1157
NIA 65 144 16 43 49 45 64 144 67 47 80 61
NRA 3 3806 1 3802 1 3783 3 3801 3 3712 3 3802

Total 2428 12 554 989 12 628 2047 12 519 1655 12 879 2799 12 184 2752 12 853

SAT+UNSAT 14 982 13 617 14 566 14 534 14 983 15 605

The results, summarized in Table 3, show that our approach performs re-
markably well against all other cvc5 configurations, as well as against Bitwuzla
and Z3, across all SMT logics. Notably, it achieves the highest total count of
benchmarks solved, surpassing the nearest competitor by 623 solved problems.
Our strategy solves the most problems in ABVFP and achieves the highest
number of unsatisfiable benchmarks solved in FP and the highest number of
satisfiable benchmarks solved in NIA.

For these SMT theories, our strategy is a clear improvement over previous
instantiation strategies. When compared to MBQI, it successfully solved an ad-
ditional 704 problems while incurring a loss of 82 problems across all logics. The
raw evaluation data also reveals a notable reduction in timeouts, decreasing from
3035 to 2436.

14 L. Kondylidou et al.

Our strategy also substantially outperforms enumerative instantiation and
SyQI across most benchmark categories. Both of these share an enumerative
nature. The former relies on evolving ground terms within the current context,
while the latter employs a fixed grammar derived from the initial set of terms.
Overall, enumerative instantiation and SyQI perform significantly better than
MBQI in unsatisfiable benchmarks (+444), but they underperform in satisfiable
benchmarks (−752). This highlights the need for a hybrid approach that com-
bines model-based and enumerative techniques. Our strategy incorporates the
enumerative aspects of SyQI while enhancing the model-based features of MBQI
to generate instantiations. This is likely why it outperforms all the mentioned
configurations. Our strategy also matches or outperforms counterexample-guided
instantiation in most logics. However, in logics such as LRA, counterexample-
guided instantiation is expected to perform better due to its specialized handling
of such theories.

Compared with Bitwuzla and Z3, our approach performs very well across var-
ious logics, often closely matching or even surpassing both competitors. Overall,
our strategy solved 87 more benchmarks than Bitwuzla and 623 more than Z3
in total. When compared to Bitwuzla, our strategy leads in ABV, ABVFP, AB-
VFPLRA and in the number of unsatisfiable benchmarks solved in BV and FP,
though it lags slightly behind in BVFP, BVFPLRA, UFBV, and in the number
of satisfiable benchmarks solved in BV. This may be because MBQI-Enum is
primarily designed for deriving contradictions. As for Z3, our strategy outper-
forms it across most logics, except for ABVFPLRA and LRA, where Z3’s better
performance is likely attributable to its well-established instantiation strategies
for real arithmetic.

Finally, the evaluation of the different configurations of MBQI-Enum in first-
order SMT-LIB benchmarks across different theories is shown in Table 4. We
observe that most configurations perform similarly; however, the configuration of
MBQI-Enum without the syms_local option enabled shows significantly poorer
performance.

In summary, our approach was highly effective in first-order SMT-LIB bench-
marks, achieving the highest number of benchmarks solved. With further re-
finements tailored to specific logics, we suspect that its performance could be
improved further.

6 Related Work

Mainstream approaches for quantifier instantiation in SMT are typically cen-
tered around E-matching [17]. Conflict-based instantiation [3,13,30] can improve
the solver’s ability to answer “T -unsatisfiable” by prioritizing instantiations that
induce quantifier-free conflicts. As a whole, these techniques are generally incom-
plete and do not target specific background theories. For satisfiable instances, Ge
and de Moura [11] introduced MBQI, which is complete for certain fragments.
Finite model finding [29] is a variant of this technique that targets quantified
formulas whose domains are small and finite. Approaches for quantified formulas

Augmenting Model-Based Instantiation with Fast Enumeration 15

Table 4. MBQI-Enum configurations in SMT-LIB benchmarks

Library cvc5[M] cvc5[M-x] cvc5[M-l] cvc5[M+g]

SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

ABV 729 157 729 157 647 135 737 159
ABVFP 31 0 31 0 31 0 32 0
ABVFPLRA 42 2 42 2 41 2 38 2
BV 593 5076 594 5075 616 4842 600 5086
BVFP 169 7 169 7 167 4 176 2
BVFPLRA 226 25 226 25 220 24 231 25
FP 116 2222 116 2222 115 2089 116 2223
FPLRA 36 0 36 0 37 0 36 0
LIA 149 239 149 239 150 167 149 239
LRA 557 1157 557 1157 546 1129 557 1157
NIA 80 61 80 61 68 47 78 56
NRA 3 3802 3 3802 3 3712 3 3802
UFBV 21 105 21 105 24 88 17 99

Total 2752 12 853 2753 12 852 2665 12 239 2770 12 850

in higher-order logic are discussed by Barbosa et al. [4], but, in contrast to this
work, they are based on (higher-order) E-matching.

Other approaches for higher-order logic, notably in Vampire [16] and Zipper-
position [10], rely on superposition. Vampire has been initially extended to han-
dle higher-order reasoning using applicative first-order logic with combinators.
Since this proved insufficient for problems requiring complex unifiers, its super-
position calculus was later enhanced with native λ-abstractions and a depth-
bounded version of higher-order unification [6]. As for Zipperposition, it also
uses a superposition calculus that directly supports higher-order terms. It tack-
les the challenge of higher-order unification by using techniques such as pattern
unification and heuristics to manage undecidability issues.

Certain background theories admit quantifier elimination, which can be han-
dled using domain-specific instantiation strategies. Specifically, efficient and com-
plete instantiation procedures have been developed for quantified linear arith-
metic [27] and quantified bitvectors [21]. These techniques require specific knowl-
edge of the background theory.

Other recent works on quantifier instantiation have pursued enumeration
as a pragmatic means for discovering useful instantiations. Reynolds et al. [24]
introduced enumerative instantiation as an alternative to MBQI, which primarily
focused on first-order logic in the empty theory. This technique has been further
studied in more recent works, where more advanced selection strategies are used
for instantiations, including those based on machine learning [14,15,22].

The closest related works to ours are counterexample-guided model synthe-
sis [23] and SyQI [20], which both focus on enumerative approaches for find-
ing useful instantiations in rich background logics. The former work was imple-
mented in the Boolector [8] solver; it was limited to selected first-order theories

16 L. Kondylidou et al.

and did not handle higher-order logic. The latter work can potentially be used
for any theory but does not leverage MBQI for guiding the instantiation proce-
dure. Our evaluation shows that our MBQI-Enum strategy generally outperforms
SyQI overall.

7 Conclusion

We presented a new strategy, MBQI-Enum, for instantiating quantifiers in SMT
solvers. It extends MBQI with the SyGuS enumerator, thereby augmenting the
number of instantiations considered at every iteration. The main strength of our
strategy is that it combines the fast model-finding capabilities of MBQI and the
diversity of terms considered by SyQI. We implemented the strategy in cvc5 and
found that it helps solve many first- and higher-order problems from SMT-LIB
and TPTP for which cvc5 previously either timed out or gave up early.

Several aspects of our approach present opportunities for future work. First,
we could improve performance by enhancing the quantifier-free solver to better
integrate with our instantiation approach. Moreover, although our instantiation
technique is designed to be generic, we could tailor it to individual SMT logics.
Finally, we could develop more sophisticated instantiation strategies for higher-
order logic. By designing methods that can more intelligently navigate the space
of enumerated terms, we should be able to improve the solver’s ability to handle
complex higher-order problems.

References

1. Andrews, B.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Springer, 2nd edn. (2002)

2. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength smt solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 415–442. Springer International Pub-
lishing, Cham (2022)

3. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 10206, pp. 214–230 (2017). https://doi.org/10.1007/
978-3-662-54580-5_13, https://doi.org/10.1007/978-3-662-54580-5_13

4. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending smt
solvers to higher-order logic. In: Fontaine, P. (ed.) Automated Deduction – CADE
27. pp. 35–54. Springer International Publishing, Cham (2019)

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-662-54580-5_13

Augmenting Model-Based Instantiation with Fast Enumeration 17

6. Bhayat, A., Suda, M.: A higher-order vampire (short paper). In: Benzmüller, C.,
Heule, M.J., Schmidt, R.A. (eds.) Automated Reasoning. pp. 75–85. Springer Na-
ture Switzerland, Cham (2024)

7. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: verit: An open,
trustable and efficient smt-solver. In: Schmidt, R.A. (ed.) Automated Deduction –
CADE-22. pp. 151–156. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

8. Brummayer, R., Biere, A.: Boolector: An efficient smt solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 174–177. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

9. Church, A.: A formulation of the simple theory of types. The Journal of Symbolic
Logic 5(2), 56–68 (1940), https://www.jstor.org/stable/2266170

10. Cruanes, S., contributors: Zipperposition: a clausal superposition theorem prover.
https://github.com/sneeuwballen/zipperposition (2024), gitHub repository

11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Veri-
fication. pp. 306–320. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

12. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem-Proving
Environment for Higher-Order Logic. Cambridge University Press (1993)

13. Hoenicke, J., Schindler, T.: Incremental search for conflict and unit instances
of quantified formulas with e-matching. In: Henglein, F., Shoham, S., Vizel, Y.
(eds.) Verification, Model Checking, and Abstract Interpretation - 22nd Interna-
tional Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12597, pp. 534–555. Springer
(2021). https://doi.org/10.1007/978-3-030-67067-2_24, https://doi.org/10.1007/
978-3-030-67067-2_24

14. Jakubuv, J., Janota, M., Piotrowski, B., Piepenbrock, J., Reynolds, A.: Selecting
quantifiers for instantiation in SMT. In: Graham-Lengrand, S., Preiner, M. (eds.)
Proceedings of the 21st International Workshop on Satisfiability Modulo Theo-
ries (SMT 2023) co-located with the 29th International Conference on Automated
Deduction (CADE 2023), Rome, Italy, July, 5-6, 2023. CEUR Workshop Proceed-
ings, vol. 3429, pp. 71–77. CEUR-WS.org (2023), https://ceur-ws.org/Vol-3429/
short10.pdf

15. Janota, M., Barbosa, H., Fontaine, P., Reynolds, A.: Fair and adventurous enu-
meration of quantifier instantiations. In: Formal Methods in Computer Aided De-
sign, FMCAD 2021, New Haven, CT, USA, October 19-22, 2021. pp. 256–260.
IEEE (2021). https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_35, https:
//doi.org/10.34727/2021/isbn.978-3-85448-046-4_35

16. Kovács, L., Voronkov, A.: The vampire prover. In: International Conference on
Computer Aided Verification. pp. 292–298. Springer (2013)

17. de Moura, L., Bjørner, N.: Efficient e-matching for smt solvers. In: Pfenning, F.
(ed.) Automated Deduction – CADE-21. pp. 183–198. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

18. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

19. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification. pp. 3–17. Springer Nature Switzerland, Cham (2023)

20. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Syntax-guided
quantifier instantiation. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms

https://www.jstor.org/stable/2266170
https://github.com/sneeuwballen/zipperposition
https://doi.org/10.1007/978-3-030-67067-2_24
https://doi.org/10.1007/978-3-030-67067-2_24
https://doi.org/10.1007/978-3-030-67067-2_24
https://doi.org/10.1007/978-3-030-67067-2_24
https://ceur-ws.org/Vol-3429/short10.pdf
https://ceur-ws.org/Vol-3429/short10.pdf
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_35
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_35
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_35
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_35

18 L. Kondylidou et al.

for the Construction and Analysis of Systems. pp. 145–163. Springer International
Publishing, Cham (2021)

21. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: Solving quanti-
fied bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G.
(eds.) Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-
17, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10982, pp.
236–255. Springer (2018). https://doi.org/10.1007/978-3-319-96142-2_16, https:
//doi.org/10.1007/978-3-319-96142-2_16

22. Piepenbrock, J., Janota, M., Urban, J., Jakubuv, J.: First experiments with neural
cvc5. In: Bjørner, N.S., Heule, M., Voronkov, A. (eds.) LPAR 2024: Proceedings of
25th Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Port Louis, Mauritius, May 26-31, 2024. EPiC Series in Computing, vol. 100, pp.
264–277. EasyChair (2024). https://doi.org/10.29007/H5DR, https://doi.org/10.
29007/h5dr

23. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In:
Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 10205, pp. 264–280 (2017). https://doi.org/10.1007/
978-3-662-54577-5_15, https://doi.org/10.1007/978-3-662-54577-5_15

24. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 112–131. Springer International Publishing, Cham (2018)

25. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 112–131. Springer International Publishing, Cham (2018)

26. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart
and fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S.
(eds.) Computer Aided Verification - 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 11562, pp. 74–83. Springer (2019). https://doi.org/10.
1007/978-3-030-25543-5_5, https://doi.org/10.1007/978-3-030-25543-5_5

27. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in smt. In: Kroening, D., Păsăreanu,
C.S. (eds.) Computer Aided Verification. pp. 198–216. Springer International Pub-
lishing, Cham (2015)

28. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in smt. In: Kroening, D., Păsăreanu,
C.S. (eds.) Computer Aided Verification. pp. 198–216. Springer International Pub-
lishing, Cham (2015)

29. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in smt. In:
Sharygina, N., Veith, H. (eds.) Computer Aided Verification. pp. 640–655. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

30. Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting instances of quantified
formulas in smt. In: 2014 Formal Methods in Computer-Aided Design (FMCAD).
pp. 195–202 (2014). https://doi.org/10.1109/FMCAD.2014.6987613

31. Sutcliffe, G.: The tptp problem library and associated infrastructure. Journal of
Automated Reasoning 43(4), 337–362 (2009)

https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.29007/H5DR
https://doi.org/10.29007/H5DR
https://doi.org/10.29007/h5dr
https://doi.org/10.29007/h5dr
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1109/FMCAD.2014.6987613

	Augmenting Model-Based Instantiation with Fast Enumeration

