
Tao’s Equational Proof Challenge Accepted1

Lydia Kondylidou1 , Jasmin Blanchette1 , and Marijn J.H. Heule22

1 Ludwig-Maximilians-Universität München, Munich, Germany3

{l.kondylidou,jasmin.blanchette}@lmu.de4
2 Carnegie Mellon University, Pittsburgh, United States5

marijn@cmu.edu6

Abstract. In the context of the Equational Theories Project, Terence7

Tao posed the challenge of finding alternatives to a complicated 62-step8

proof found by the Vampire superposition prover. We introduce a proof9

minimization tool called Krympa. Using a combination of brute force and10

heuristics, and exploiting both Vampire and the Twee equational prover,11

the tool reduces the 62-step proof to 20 steps, each corresponding to a12

rewrite. In an empirical evaluation, it also performs well on 1431 equa-13

tional problems originating from the same project, reducing in particular14

a 151-step proof to only 10 steps.15

Keywords: Theorem provers · Equational logic · Proof minimization.16

1 Introduction17

The Equational Theories Project [7], launched in September 2024 by Fields med-18

alist Terence Tao, aims at exploring the relations between different equational19

theories of magmas. A magma is a basic algebraic structure consisting of a set20

equipped with a single binary operation ⋄ closed on that set. The project’s first21

phase, concluded in April 2025, focused on equational laws for magmas that22

contain at most four applications of ⋄.23

The project uses the Lean [22] proof assistant to express proofs and counter-24

examples but depends on automatic theorem provers and other external tools.25

The problems explored in the project’s first phase all fall within first-order logic’s26

unit equality fragment: They consist of a ∀-quantified equation as the sole axiom27

and a ∀-quantified equation as the proof goal, or conjecture.28

For the problem 650 =⇒ 448, where 650 denotes the axiom ∀x, y, z. x = x ⋄29

(y ⋄ ((z ⋄x) ⋄ y)) and 448 denotes the conjecture ∀x, y, z. x = x ⋄ (y ⋄ (z ⋄ (x ⋄ z))),30

the Vampire [5] superposition prover found a particularly complex proof, with 6231

inference steps, excluding clausification and Skolemization. Given that the proof32

is unintelligible, Tao challenged the community to find “an alternate proof, by33

whatever means you wish—human, semi-automated, or automated” [28].34

One idea could be to run a specialized equational prover, Twee [24], instead of35

Vampire, but this results in a very long, 137-step proof. Another approach would36

be to use Lean’s automation, such as the aesop [20], canonical [23], duper [9],37

and grind [1] tactics and the LeanHammer [30], to reconstruct and compress38

https://orcid.org/0009-0001-9875-2627
https://orcid.org/0000-0002-8367-0936
https://orcid.org/0000-0002-5587-8801

2 L. Kondylidou et al.

consecutive superposition steps, in the style of Sledgehammer’s structured proof39

reconstruction [6, Sect. 6.3]. This would yield a shorter and more high-level proof,40

in which each step may combine multiple rewrites. Our approach is orthogonal.41

Our working hypothesis is that Vampire’s 62-step proof, which emerged as the42

byproduct of a saturation process, is likely suboptimal. By mixing and match-43

ing proofs generated by different automatic provers, as proposed by Sutcliffe et44

al. [27], we hope to achieve a shorter, simpler proof.45

We introduce Krympa, a tool that minimizes equational proofs by decompos-46

ing them into independently provable components and reassembling them into47

more concise, intelligible proofs. Specifically, starting from a Vampire-generated48

proof, the tool transforms it into a direct proof (Sect. 3) and analyzes its infer-49

ences to break it down into intermediate results that serve as candidate lemmas.50

Each of these lemmas is then proved independently using Vampire and Twee51

(Sect. 4), the two leading systems in the unit equality division of CASC 2025 [26].52

The resulting proofs are then combined into a single proof using heuristics that53

favor shorter derivations (Sect. 5).54

Given the 62-step Vampire proof of 650 =⇒ 448, our tool produces a 20-55

step proof, where 13 steps are generated by Twee (Sect. 6). In a larger empirical56

evaluation, we applied the tool to 1431 provable implications from the Equational57

Theories Project and obtained positive results (Sect. 7). In particular, the tool58

reduced a 151-step Vampire proof to 10 steps.59

Our tool is implemented in Rust, OCaml, and Python. Its source code is avail-60

able at https://github.com/kondylidou/Krympa. The files associated with61

Tao’s challenge and our empirical evaluation data are also available online [19].62

2 Background63

We briefly review the Vampire and Twee automatic provers and their associated64

proof formats.65

2.1 Vampire and Superposition Proofs66

Vampire is a saturation-based theorem prover for first-order logic with equality67

based on the superposition calculus [4]. It implements highly optimized search68

strategies and data structures, and integrates techniques such as literal selection,69

term orders, redundancy elimination, strategy scheduling, and portfolios.70

Superposition works on implicitly ∀-quantified clauses. A preprocessor per-71

forms clausification and Skolemization. For example, the axiom ∀x. f(x) = g(x)72

is transformed into f(x) = g(x), where x is a free variable, and the conjecture73

∀x. f(x) = g(x) is negated and transformed into f(sk) ̸= g(sk), where sk is a74

Skolem constant. The objective is to derive the contradictory clause ⊥. For the75

unit equality fragment, the calculus’s two relevant inference rules are as follows:76

t ̸= u
equality resolution

⊥
t = t′ s[u] 1 s′

superposition
µ(s[t′] 1 s′)

https://github.com/kondylidou/Krympa

Tao’s Equational Proof Challenge Accepted 3

The equality resolution rule has one premise, t ̸= u, one conclusion, ⊥, and77

one side condition: that t and u are unifiable. The superposition rule has two78

premises and one conclusion. The ▷◁ symbol denotes either = or ̸= throughout79

the rule. The = and ̸= operators are commutative; for example, the premise t = t′80

can match the equation f(a) = b either as is or as b = f(a). The premises are81

assumed to have disjoint sets of variables, which can be achieved by renaming.82

Also in the rule, s[] is a term with a hole, the terms s[u] and s[t′] are obtained83

by filling the hole in s[] with u and t′, and µ is a most general unifier of t84

and u. For example, the most general unifier of the terms h(a, y) and h(x, b) is85

{x 7→ a, y 7→ b}; applying it on both terms yields h(a, b). Finally, the rule has86

further side conditions, not shown here, that restrict the search space.87

Example 1. A subtle case of the superposition rule arises when both premises88

are the same clause. Consider the following rule instance, where the variable in89

the second premise has been renamed to avoid a clash:90

f(f(x)) = g(x) f(f(x′)) ̸= g(x′)
superposition

f(g(x)) ̸= g(f(x))

This instance is obtained by taking t := f(f(x)), t′ := g(x), ▷◁ := ̸=, s[] := f([]),91

u := f(x′), s′ := g(x′), and µ = {x′ 7→ f(x)}. Applying the unifier µ to both92

premises yields the equation f(f(x)) = g(x) and the disequation f(f(f(x))) ̸=93

g(f(x)). The inference replaces the subterm f(f(x)) in the disequation with g(x)94

using the equation as a left-to-right rewrite rule, and derives the conclusion.95

Example 2. Vampire implements parallel superposition, a variant of the super-96

position rule in which multiple subterms that match a term are replaced. The97

following inference illustrates this:98

b = a h(b, a, b) ̸= h(a, b, a)
parallel superposition

h(a, a, a) ̸= h(a, a, a)99

Superposition proofs are represented in a linear format. They are refutational100

and show how to derive ⊥ from the input axioms and the negated conjecture.101

Example 3. The following is a linear superposition proof from clauses 1–3:102

1. a = b axiom
2. f(x) = x axiom
3. h(f(b), a) ̸= h(a, f(b)) negated conjecture
4. h(b, a) ̸= h(a, b) by parallel superposition from 2 and 3
5. h(a, a) ̸= h(a, a) by parallel superposition from 1 and 4
6. ⊥ by equality resolution from 5

103

104

2.2 Twee and Structured Equational Chain Proofs105

Twee is an automatic prover specialized for equational reasoning. It is based on106

the unfailing completion procedure [3], an extension of Knuth–Bendix comple-107

tion [18]. In the DISCOUNT and Waldmeister tradition [8], Twee’s proofs are108

structured as a sequence of lemmas, where each lemma and the conjecture are109

4 L. Kondylidou et al.

proved by a chain of equalities. Twee introduces lemmas if they are needed more110

than once. Twee proofs are arguably more readable than Vampire proofs. As111

with superposition, quantifiers are eliminated by a preprocessor.112

Example 4. The following is a Twee-style proof of goal 1 from axioms 1 and 2:113

Axiom 1: a = b

Axiom 2: f(x) = x

Lemma 3: f(b) = a
Proof:

f(b)
= { by axiom 1 right-to-left }

f(a)
= { by axiom 2 }

a

Goal 1: h(f(b), a) = h(a, f(b))
Proof:

h(f(b), a)
= { by lemma 3 }

h(a, a)
= { by lemma 3 right-to-left }

h(a, f(b))

114

3 Proof Redirection115

Vampire generates proofs by refutation, whereas our mix-and-match approach116

requires direct proofs. To bridge this gap, we transform Vampire proofs into117

direct proofs. In the following sections, we will always use direct proofs.118

To redirect a proof by refutation in equational logic, we first introduce ∃119

quantifiers for Skolem constants and ∀ quantifiers for variables. For example,120

h(x, sk) ̸= x is transformed into ∃z. ∀x. h(x, z) ̸= x. Then we apply the contra-121

positive to all inferences in which a premise and the conclusion are disequations122

to obtain positive equations. Thus, the inference123

h(a, y) = b h(x, sk) ̸= x
superposition

b ̸= a

becomes124

∀y. h(a, y) = b b = a

∀z. ∃x. h(x, z) = x

Equality resolution inferences from a premise t ̸= t are omitted since their con-125

trapositives derive trivial equations.126

Example 5. The following is a direct proof obtained from Example 3’s proof127

by refutation.128

1. a = b axiom
2. ∀x. f(x) = x axiom
3. h(b, a) = h(a, b) from 1 and h(a, a) = h(a, a)
4. h(f(b), a) = h(a, f(b)) from 2 and 3

129

130

4 Proof Generation for Intermediate Lemmas131

Our approach starts by translating the main theorem into a TPTP [13] input132

problem and running Vampire to produce an initial proof. This proof is turned133

Tao’s Equational Proof Challenge Accepted 5

into a direct proof, then decomposed into intermediate lemmas. For each lemma,134

we generate corresponding problems, with the objective of proving them using135

Vampire and Twee. Three problem variants are generated:136

1. Big-step problems contain the axioms together with the lemma as the con-137

jecture, and nothing else. This allows us to investigate whether a radically138

new proof, with different intermediate steps, can be found.139

2. Small-step problems contain the axioms together with the lemma as the140

conjecture, and all lemmas derived prior to this lemma in the initial proof as141

additional axioms. This allows us to investigate whether a somewhat similar142

variant of the original derivation can be found.143

3. Abstracted problems are variants of big-step problems that contain the ax-144

ioms together with an abstracted version of the lemma as the conjecture.145

Specifically, selected subterms of the lemma—for example, expressions such146

as x ⋄ y that do not contain nested applications—are replaced by fresh vari-147

ables. This allows us to investigate whether a more general version of the148

lemma is provable, ideally with a shorter, more abstract proof.149

Each problem is submitted to the two provers. If a proof is found for a small-step150

problem, we expand it to recursively include the shortest proofs of the lemmas151

used as axioms for the axioms referenced in the proof. Ties are broken arbitrarily.152

Note that abstracted problems might be unprovable.153

Next, we compare the proofs of the three problem variants corresponding to154

the same lemma. If the abstracted problem has the shortest proof, the lemma155

it proves is replaced in all small-step problems where it appears as an axiom156

with the generalized lemma from the abstracted problem. Each updated small-157

step problem is then re-proved, and if the result has fewer steps, we replace the158

small-step problem’s proof with it.159

The length of a Vampire-generated proof is the number of steps of its redi-160

rected proof, excluding preprocessing. For Twee, the length of a proof is the161

cumulative number of equalities in the equality chains. Thus, the Vampire proof162

in Example 5 has two steps, and the Twee proof in Example 4 has four steps.163

5 Proof Construction for the Main Theorem164

Based on the intermediate lemmas’ proofs generated in the previous phase, our165

approach constructs a proof of the main theorem. The proof generally consists166

of three segments. The first segment starts with the axioms and ends with the167

derivation of a so-called departure lemma. The second segment derives a so-called168

arrival lemma. The third segment derives the conjecture. Different candidates169

are considered as the departure and arrival lemmas, yielding different proofs.170

The proof with the fewest steps is chosen.171

Specifically, we first identify up to six intermediate lemmas that arise close to172

the end of the initial proof, including the conjecture, and consider them as can-173

didate arrival lemmas. For each of these, we consider its transitive dependencies174

6 L. Kondylidou et al.

as candidate departure lemmas. Then, for each candidate departure lemma, we175

construct a problem with the axioms and the departure lemma’s dependencies176

as the axioms and the departure lemma itself as the conjecture. We run both177

provers and, if at least one succeeds, we use the shorter result as the proof of the178

first segment, unless an even shorter proof was generated in the previous phase.179

Next, for each pair of candidate departure and arrival lemmas, we generate180

a new problem with the original axioms, the departure lemma, and its depen-181

dencies as axioms and the arrival lemma as the conjecture. We run both provers182

and, if at least one succeeds, we use the shorter result as the proof of the second183

segment, unless an even shorter proof was generated earlier. Finally, we generate184

a new problem with the original axioms, the departure lemma, its dependencies,185

and the arrival lemma as axioms and the original conjecture as the conjecture.186

We run both provers and, if at least one succeeds, we use the shorter result as the187

proof of the third segment, unless an even shorter proof was generated earlier.188

Without the separation into segments, proof minimization could be intractable189

due to combinatorial explosion. We chose to work with three segments as a trade-190

off between performance and flexibility.191

Example 6. Before we review the three-segment proof construction approach192

in detail, let us look at an example. The following sketch represents an initial193

seven-step Vampire-generated redirected proof of a theorem A =⇒ C:194

A axiom195

L1 from A and A196

L2 from A and L1197

L3 from L1 and L2198

L4 from L2 and L3199

L5 from L3 and L4200

L6 from A and L5201

C from L5 and L6202

Here, A denotes the axiom, and L1, . . . , L6 are the lemmas used to derive the203

conjecture C.204

In the first phase, for each lemma L1, . . . , L6, we construct big-step, small-205

step, and abstracted problems and try to prove them using Vampire and Twee,206

retaining the shortest proof for each lemma. Suppose the following: The shortest207

proof of L1 has one step and is obtained from its big-step problem using Vampire;208

for L2 and L3, the shortest proofs are obtained from their small-step problems209

using Twee; for L4, the shortest proof is obtained from its abstracted problem210

using Twee; and for L5 and L6, the shortest proofs are obtained from their211

small-step problems using Vampire.212

In the next phase, the last five lemmas, L2, . . . , L6, and the conjecture C are213

considered as candidate arrival lemmas. We focus on L6. The proof below, found214

by Vampire for L6’s small-step problem, is the shortest proof for L6:215

A axiom216

L1 from A and A217

L2 from A and L1218

Tao’s Equational Proof Challenge Accepted 7

L3 from L1 and L2219

L4 from L2 and L3220

L5 from L3 and L4221

L6 from A and L5222

This proof happens to be identical to the first six steps of the initial proof, but223

in general it could be different.224

Next, lemmas L1 to L5 are considered as candidate departure lemmas. We225

focus on L3. The proof of conjecture C is constructed by concatenating three226

segments. For the first segment, we create a new problem with A, L1, and L2227

as axioms, since they are dependencies of the departure lemma L3 in the above228

proof of L6, and L3 as the conjecture. We run both provers on this problem229

and obtain a two-step Vampire proof of L3 from A, L1, and a new lemma L′
2.230

Since L1 is treated as an axiom, we must include its proof to obtain a complete231

proof of L3. In the first phase, we found a one-step Vampire proof of L1 from232

the axiom A, so we use it. In summary, the proofs of L1 and L3 form the first233

segment, which consists of one step for L1 and two steps for L3.234

For the second segment, we create a new problem with A, L1, L′
2, and L3 as235

axioms and the arrival lemma L6 as the conjecture. We run both provers on this236

problem and obtain a two-step Twee proof of L6 from L1 and L3. Together with237

the first segment, this yields a five-step proof of L6. Since this proof is shorter238

than the six-step proof of L6 presented above, it is used as the second segment.239

For the third segment, we create a new problem with A, L1, L′
2, the departure240

lemma L3, and the arrival lemma L6 as axioms and C as the conjecture. We run241

both provers on this problem and obtain a two-step Twee proof of C from L′
2242

and L3. Since this proof does not use the arrival lemma L6, the second segment243

is excluded from the result. Concatenating the first and third segments yields a244

new five-step proof of C:245

A axiom
L1 from A
L′
2 from A and L1

L3 from L1 and L′
2

C by a two-step equality chain using L′
2 and L3

246

Finally, other combinations of candidate departure and arrival lemmas are247

also considered, and the shortest proof is retained.248

5.1 Construction of the Dependency Graph249

We identify lemmas occurring close to the end of the derivation as candidate250

arrival lemmas. Different candidates typically depend on substantially different251

subsets of earlier lemmas. Each candidate therefore induces its own dependency252

chain, and different choices can lead to substantially different proof lengths. We253

consider six candidate arrival lemmas extracted from the initial proof, including254

the conjecture itself, since our approach may produce a shorter proof of the255

conjecture by reproving it directly from a minimized dependency set.256

8 L. Kondylidou et al.

For every candidate, we build a dependency graph that captures the lemmas257

required to derive it. Dependencies are determined from the shortest Vampire258

or Twee proof obtained for each lemma. Given that we generate three problem259

variants and run two provers, up to six proofs per lemma are considered. A260

lemma ℓ is considered to directly depend on a lemma ℓ′ if the shortest proof261

of ℓ uses ℓ′ as an axiom. Thus, for big-step and abstracted problems, only the262

original axioms can be dependencies. For small-step problems, each intermediate263

step in a Vampire proof and each lemma in a Twee proof is considered a lemma.264

The dependency graph associated with a candidate arrival lemma is a di-265

rected acyclic graph (DAG) whose nodes correspond to lemmas and whose edges266

express derivability between them. Formally, let V be a finite set of lemmas, each267

represented by an equation and a set of dependencies on other lemmas. We con-268

struct a DAG (V,E), where each vertex ℓ ∈ V corresponds to a lemma and each269

edge (ℓ, ℓ′) ∈ E indicates that lemma ℓ directly depends on lemma ℓ′. As an270

optimization, we merge lemmas that are identical up to the naming of variables,271

keeping the shortest proof.272

5.2 Construction of the First Proof Segment273

For each candidate arrival lemma, we investigate whether all lemmas included in274

its dependency graph are needed to derive it or whether a shorter proof can be275

obtained by choosing a departure lemma and recomputing parts of the derivation276

by combining proofs generated by the provers.277

As candidate departure lemmas, we consider all lemmas in the DAG. Let ℓ278

be a candidate departure lemma. If ℓ depends only on the axioms, we take the279

shortest big-step, small-step, or abstracted proof previously found by Vampire or280

Twee. Otherwise, we build a problem that includes ℓ’s dependencies in the DAG281

as axioms and the departure lemma as the conjecture, and we run Vampire and282

Twee. If at least one of them succeeds, we choose the shorter proof as ℓ’s proof.283

This derivation, together with the shortest proofs of ℓ’s dependencies generated284

for the big-step, small-step, or abstracted problems, forms the first segment of285

the final proof. However, if we found an even shorter proof for the big-step, small-286

step, or abstracted problem, we use that proof instead. For small-step proofs, we287

must also include the proofs of the intermediate lemmas encoded as axioms.288

5.3 Construction of the Remaining Proof Segments289

To construct the second segment, we generate a problem with the departure290

lemma and its dependencies as axioms and the arrival lemma as the conjecture,291

and run both provers. If at least one of them succeeds, we choose the shorter292

proof as the proof of the arrival lemma. As above, we fall back on the proof of293

a big-step, small-step, or abstracted problem if it is even shorter.294

Finally, to construct the third segment, we generate a problem with the295

departure lemma, the arrival lemma, and their dependencies as axioms and the296

original conjecture as the conjecture, and invoke both provers. If at least one of297

Tao’s Equational Proof Challenge Accepted 9

them succeeds, we choose the shorter proof as the proof of the original conjecture.298

As above, we fall back on a previously derived proof if it is even shorter.299

The final proof is obtained by concatenating the three segments. The proof300

might contain unreferenced lemmas; these are pruned.301

5.4 Proof Output302

Our tool generates the minimized proof in a native format, from which two Lean303

outputs are produced. The first Lean output is a step-by-step formalization using304

the calc tactic to reconstruct chains of equalities. It applies the duper tactic305

to fill in the subproofs. For example, a proof of t1 = t2 = t3 = t4 would be306

represented by307

calc308

t1 = t2 := by duper . . .309

_ = t3 := by duper . . .310

_ = t4 := by duper . . .311

where the ellipses stand for duper’s arguments. The second Lean output is a more312

compact Lean formalization in which each lemma is proved directly using Lean’s313

automation without including the intermediate steps in chains of equalities.314

6 Application to Tao’s Challenge315

We implemented our approach and tried the resulting tool, Krympa, on Tao’s316

challenge theorem 650 =⇒ 448:317

(∀x, y, z. x = x ⋄ (y ⋄ ((z ⋄ x) ⋄ y))) =⇒ ∀x, y, z. x = x ⋄ (y ⋄ (z ⋄ (x ⋄ z))).

Our tool first ran Vampire to obtain an initial 62-step superposition proof. Then318

it constructed 62 problems of each variant (big-step, small-step, and abstracted)319

and tried to prove them using Vampire and Twee. Among the six candidate320

arrival lemmas, the shortest proof was found by selecting321

∀x, y, z. x = x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x). (lemma 9)

The coloring highlights repeating patterns. Next, our tool constructed the de-322

pendency graph for this lemma. The DAG contained 37 lemmas. It was based323

on big- and small-step proofs.324

Among the 37 candidate departure lemmas, our tool found the shortest proof325

by selecting326

∀x, y, z, w. (x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z =
((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) ⋄ (w ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ w)). (lemma 7)

According to the DAG, the shortest proof of this lemma was found by running327

Vampire on the small-step problem consisting of the axiom and the following328

lemma dependencies:329

10 L. Kondylidou et al.

∀x, y, z, w. x ⋄ ((y ⋄ z) ⋄ x) =
(x ⋄ ((y ⋄ z) ⋄ x)) ⋄ (w ⋄ (z ⋄ w)) (lemma 1)

∀x, y, z, w, v, u. x ⋄ ((y ⋄ ((z ⋄ w) ⋄ y)) ⋄ x) =
(x ⋄ ((y ⋄ ((z ⋄ w) ⋄ y)) ⋄ x)) ⋄ (v ⋄ ((u ⋄ (w ⋄ u)) ⋄ v)) (lemma 2)

∀x, y, z, w, v. x ⋄ (y ⋄ x) =
(x ⋄ (y ⋄ x)) ⋄ (z ⋄ ((w ⋄ ((v ⋄ y) ⋄ w)) ⋄ z)) (lemma 3)

∀x, y, z, w, v. x ⋄ (y ⋄ x) =
(x ⋄ (y ⋄ x)) ⋄ ((z ⋄ (y ⋄ z)) ⋄ (w ⋄ ((v ⋄ y) ⋄ w))) (lemma 4)

∀x, y, z, w. x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x) =
(x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x)) ⋄
(w ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ w)) (lemma 5)

∀x, y, z, w. (x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z =
((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) ⋄ ((w ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ w)) ⋄
(z ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z))). (lemma 6)

Following the inference steps of the initial Vampire proof, our tool derived330

lemma 1 by applying a superposition inference with the axiom x = x ⋄ (y ⋄ ((z ⋄331

x) ⋄ y)) as the first premise and a renamed copy x′ = x′ ⋄ (y′ ⋄ ((z′ ⋄ x′) ⋄ y′)) as332

the second premise. The most general unifier of the first premise’s right-hand side333

and the subterm z′ ⋄ x′ of the second premise is {x′ 7→ y ⋄ ((z ⋄ x) ⋄ y), z′ 7→ x}.334

Applying the unifier to both premises yields the equations x = x ⋄ (y ⋄ ((z ⋄ x) ⋄335

y)) and y ⋄ ((z ⋄ x) ⋄ y) = (y ⋄ ((z ⋄ x) ⋄ y)) ⋄ (y′ ⋄ ((x ⋄ (y ⋄ ((z ⋄ x) ⋄ y))) ⋄ y′)).336

The superposition inference replaced the subterm x ⋄ (y ⋄ ((z ⋄ x) ⋄ y)) in the337

second equation with x using the first equation as a right-to-left rewrite rule,338

and thus derived lemma 1, up to the naming of variables. Lemmas 2 to 7 were339

derived similarly following the steps of the initial Vampire proof.340

Next, from the axiom and lemma 7, our tool proved the arrival lemma341

(lemma 9) using Twee. For this proof, Twee introduced the auxiliary lemma342

∀x, y, z, w. (y ⋄ ((z ⋄ y) ⋄ y)) ⋄ w =
((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ w) ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x). (lemma 8)

Finally, assuming all the lemmas derived so far, our tool proved the conjecture343

from lemmas 5 and 9 using Twee. The resulting proof has 20 steps, including344

three Twee-generated chains of equalities.345

Below we present the final proof adapted from our tool’s detailed Lean out-346

put. Instead of relying on proof automation, we use the nth_rw tactic, which347

performs a single rewrite step, where the numeric argument indicates which348

matching occurrence should be rewritten. In one case, two numbers are sup-349

plied, corresponding to a parallel rewrite.350

class Magma (α : Type _) where351

op : α → α → α352

353

infix:65 " ⋄ " => Magma.op354

Tao’s Equational Proof Challenge Accepted 11

theorem Equation650_implies_Equation448 (G : Type _) [Magma G]355

(op_law : ∀ x y z : G, x = x ⋄ (y ⋄ ((z ⋄ x) ⋄ y))) :356

∀ x y z : G, x = x ⋄ (y ⋄ (z ⋄ (x ⋄ z))) :=357

have lemma1 (x y z w : G) :358

x ⋄ ((y ⋄ z) ⋄ x) = (x ⋄ ((y ⋄ z) ⋄ x)) ⋄ (w ⋄ (z ⋄ w)) := by359

nth_rw 3 [op_law z x y]360

exact op_law (x ⋄ ((y ⋄ z) ⋄ x)) w z361

362

have lemma2 (x y z w v u : G) :363

x ⋄ ((y ⋄ ((z ⋄ w) ⋄ y)) ⋄ x) =364

(x ⋄ ((y ⋄ ((z ⋄ w) ⋄ y)) ⋄ x)) ⋄ (v ⋄ ((u ⋄ (w ⋄ u)) ⋄ v)) := by365

nth_rw 1 2 [lemma1 y z w u]366

exact lemma1 x (y ⋄ ((z ⋄ w) ⋄ y)) (u ⋄ (w ⋄ u)) v367

368

have lemma3 (x y z w v : G) :369

x ⋄ (y ⋄ x) = (x ⋄ (y ⋄ x)) ⋄ (z ⋄ ((w ⋄ ((v ⋄ y) ⋄ w)) ⋄ z)) := by370

nth_rw 1 [lemma1 w v y x]371

exact op_law (x ⋄ (y ⋄ x)) z (w ⋄ ((v ⋄ y) ⋄ w))372

373

have lemma4 (x y z w v : G) :374

x ⋄ (y ⋄ x) = (x ⋄ (y ⋄ x)) ⋄ ((z ⋄ (y ⋄ z)) ⋄ (w ⋄ ((v ⋄ y) ⋄ w))) := by375

nth_rw 1 [lemma1 w v y z]376

exact lemma3 x y (z ⋄ (y ⋄ z)) w v377

378

have lemma5 (x y z w : G) :379

x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x) =380

(x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x)) ⋄ (w ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ w)) := by381

nth_rw 1 [lemma2 w y z y x ((z ⋄ y) ⋄ y)]382

exact lemma4 x (y ⋄ ((z ⋄ y) ⋄ y)) w x ((z ⋄ y) ⋄ y)383

384

have lemma6 (x y z w : G) :385

(x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z =386

((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) ⋄ ((w ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ w)) ⋄387

(z ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z))) := by388

nth_rw 1 [lemma5 z x y w]389

exact op_law ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) (w ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ w)) z390

391

have lemma7 (x y z w : G) :392

(x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z =393

((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) ⋄ (w ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ w)) := by394

nth_rw 1 [lemma5 w x y z]395

exact lemma6 x y z w396

397

have lemma8 (x y z w : G) :398

((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ w) =399

(x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z := by400

let T := x ⋄ ((y ⋄ x) ⋄ x)401

calc402

(T ⋄ z) ⋄ (T ⋄ w) =403

((T ⋄ z) ⋄ ((T ⋄ w) ⋄ ((T ⋄ (T ⋄ w)) ⋄ ((w ⋄ (T ⋄ w)) ⋄ (T ⋄ (T ⋄ w)))))) := by404

12 L. Kondylidou et al.

nth_rw 1 [←op_law]405

_ = ((T ⋄ z) ⋄ ((T ⋄ w) ⋄ ((T ⋄ (T ⋄ w)) ⋄ ((w ⋄ (T ⋄ w)) ⋄406

(T ⋄ ((T ⋄ w) ⋄ (w ⋄ (T ⋄ w)))))))) := by407

nth_rw 1 [←lemma7]408

_ = ((T ⋄ z) ⋄ ((T ⋄ w) ⋄ ((T ⋄ (T ⋄ w)) ⋄ ((w ⋄ (T ⋄ w)) ⋄409

((T ⋄ ((T ⋄ w) ⋄ (w ⋄ (T ⋄ w)))) ⋄ (((T ⋄ w) ⋄ (w ⋄ (T ⋄ w))) ⋄410

(T ⋄ ((T ⋄ w) ⋄ (w ⋄ (T ⋄ w)))))))))) := by411

nth_rw 2 [←lemma7]412

_ = ((T ⋄ z) ⋄ ((T ⋄ w) ⋄ ((T ⋄ (T ⋄ w)) ⋄ (w ⋄ (T ⋄ w))))) := by413

nth_rw 1 [←op_law]414

_ = ((T ⋄ z) ⋄ ((T ⋄ w) ⋄ (T ⋄ (T ⋄ w)))) := by415

nth_rw 1 [←lemma7]416

_ = ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ z) := by417

nth_rw 1 [←lemma7]418

419

have lemma9 (x y z : G) :420

(x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x)) = x := by421

calc422

(x ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x)) =423

(x ⋄ (((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x) ⋄ ((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x))) := by424

nth_rw 1 [lemma8]425

_ = (x ⋄ (((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x) ⋄ (((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x) ⋄426

((y ⋄ ((z ⋄ y) ⋄ y)) ⋄ x)))) := by427

nth_rw 2 [lemma8]428

_ = x := by429

nth_rw 1 [←op_law]430

431

show _ by432

intros x y z433

calc434

x = x ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ x) := by435

nth_rw 1 [lemma9]436

_ = (x ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ x)) ⋄ ((y ⋄ (z ⋄ (x ⋄ z))) ⋄437

((x ⋄ ((y ⋄ x) ⋄ x)) ⋄ (y ⋄ (z ⋄ (x ⋄ z))))) := by438

nth_rw 1 [←lemma5]439

_ = x ⋄ ((y ⋄ (z ⋄ (x ⋄ z))) ⋄ ((x ⋄ ((y ⋄ x) ⋄ x)) ⋄440

(y ⋄ (z ⋄ (x ⋄ z))))) := by441

nth_rw 1 [lemma9]442

_ = x ⋄ (y ⋄ (z ⋄ (x ⋄ z))) := by443

nth_rw 1 [lemma9]444

7 Experiments on Other Equational Proofs445

To assess the general potential of our approach, we evaluated our tool on a set of446

equational theorems obtained from the Equational Theories Project repository447

[7]. We selected all problems in the 13 Lean files Proofs1 to Proofs13 that have448

a proof and translated them to TPTP problem files, yielding 1431 benchmarks.449

For each file, we invoked our tool’s TPTP problem generator, which parses450

the Lean theorems and produces corresponding TPTP problem files. For each451

Tao’s Equational Proof Challenge Accepted 13

problem, our tool was given 2700 seconds to produce a minimized proof using452

Vampire to find the initial proof and Vampire and Twee to find subproofs; on453

failure, the initial Vampire proof was output. A time limit of 10 seconds was454

used for each prover invocation. The experiments were conducted on a server455

equipped with a dual-socket AMD EPYC 9965 system (384 cores, 768 threads)456

running at 2.25–3.70 GHz with 3 TiB of DDR5 ECC RAM, and running Debian457

GNU/Linux 13 (kernel 6.17.13+deb13-amd64).458

Overall, proofs for the 13 Lean files have an average length of 6.6 steps before459

minimization and 4.5 steps after minimization using the combination of small-460

step and abstracted problems and both provers. This corresponds to a 31.5%461

decrease, showing that even short proofs can often be made shorter.462

Since longer proofs present more opportunities for minimization, we now fo-463

cus on problems whose initial proofs have at least 15 steps. Table 1 compares464

proof lengths before and after minimization. The “Avg. before” column shows the465

average number of inference steps in the initial Vampire proofs. The remaining466

columns report the average proof length after minimization under four configu-467

rations, which differ in which problem variants are used to generate candidate468

lemmas: “BA” denotes the combination of the big-step and abstracted variants;469

“SA” denotes the combination of the small-step and abstracted variants; “BS”470

denotes the combination of the big- and small-step variants; and “BSA” denotes471

the combination of all three variants.472

The results show an often substantial reduction in proof length. SA generally473

yielded the shortest proofs. Across all problems for the 13 Lean files, the average474

reduction with SA is 56.7%. BS and BSA also produced substantial reductions,475

whereas BA generally yielded the least improvements.476

Table 1. Comparison of proof lengths before and after minimization for problems with
initial proofs of at least 15 steps

File Num. problems Avg. before Avg. after

BA SA BS BSA

Proofs1 135 17.3 16.0 13.1 13.3 13.3
Proofs2 117 16.9 14.4 11.5 11.5 11.5
Proofs3 108 19.3 15.6 10.9 10.7 10.9
Proofs4 125 19.1 14.3 10.9 11.4 11.4
Proofs5 116 20.1 17.6 12.8 11.9 11.9
Proofs6 115 25.6 18.9 12.5 12.6 12.6
Proofs7 117 37.2 19.7 11.8 11.9 11.9
Proofs8 114 24.4 15.6 12.3 13.1 13.1
Proofs9 112 39.8 29.0 13.1 14.1 14.1
Proofs10 101 21.5 16.0 8.0 11.0 11.0
Proofs11 110 25.4 22.4 13.0 14.0 14.0
Proofs12 123 24.6 16.5 8.0 8.5 8.5
Proofs13 38 35.3 27.7 9.1 10.1 10.1

14 L. Kondylidou et al.

It might seem counterintuitive that SA, which does not consider big-step477

problems, outperforms BSA. However, the nonmonotonicity is to be expected.478

Provers are nondeterministic, especially when invoked with a time limit. More479

importantly, our approach makes different heuristic choices when constructing480

the three proof segments depending on which problem variants are used. As a481

result, SA might find a short proof that escapes BSA.482

The reduction in proof length is especially noticeable in individual cases. The483

problem 2666 =⇒ 3460 has a Vampire proof with 51 inference steps, which our484

tool reduces to only 12 single rewrite steps, and 2923 =⇒ 2628 is reduced from485

180 steps to only 34. The problem 3569 =⇒ 3957 is reduced from 92 to 23 steps486

and, even more dramatically, 3957 =⇒ 3971 is reduced from 141 steps to only 23.487

Furthermore, 2860 =⇒ 2660 is reduced from 44 to 14 steps, and 723 =⇒ 872 goes488

from 57 to 13 steps. Finally, 947 =⇒ 3897 underwent the largest reduction, from489

151 to 10 steps. Overall, these results demonstrate that our approach produces490

shorter proofs across a diverse set of equational theorems.491

8 Related Work492

At least two other researchers took on Tao’s challenge. Kinyon [17] found a 24-493

step proof (excluding preprocessing) of 650 =⇒ ∀x, y. x = x ⋄ y using Prover9494

[21], from which 650 =⇒ 448 follows by instantiation. Later, Le Floch [11] devel-495

oped a pen-and-paper proof and translated it to Lean. The Lean proof relies on496

only 14 rewrite steps but includes additional reasoning as proof terms, and two497

of the rewrite steps are parallel, so the overall length is similar to ours. The proof498

idea is “loosely based” on the output of multiple Prover9 runs “with intermediate499

results thrown in as assumptions or as goals”—in essence, a manual approxima-500

tion of our approach. Also in the context of the Equational Theories Project,501

Janota [15] evaluated Vampire on the project’s problems and showed that com-502

bining superposition with finite model finding can solve almost all problems.503

We are aware of little work on automated proof minimization. Stachniak504

[25] designed an algorithm for constructing resolution proofs in propositional505

logics known as strongly finite logics. Amjad [2] and Cotton [10] introduced506

techniques for minimizing propositional resolution proofs. Vyskočil et al. [29]507

proposed to compress proofs by inventing new definitions using a heuristics based508

on substitution trees. Gu et al. [14] developed ProofOptimizer, which uses large509

language models to simplify Lean proofs.510

Some SAT (satisfiability) and SMT (satisfiability modulo theories) solvers511

can minimize the number of axioms needed for a proof, but the result can be a512

longer proof. SAT solvers commonly interleave search, which can be expressed513

as resolution steps, with formula-rewriting techniques that go beyond resolution.514

This interleaving, known as inprocessing [16], is highly effective and often yields515

both faster solving times and shorter proofs than either approach in isolation.516

The idea of automatically mixing and matching proofs is not new. Sutcliffe517

et al. [27] introduced a method for combining automatically generated proofs to518

generate new ones. Their proofs are represented as DAGs, enabling the identifi-519

Tao’s Equational Proof Challenge Accepted 15

cation and replacement of subproofs across different proofs. Proof combination520

is guided by heuristics that measure structural similarity, and a greedy search521

strategy is used to explore alternative combinations that yield proofs differing522

from the originals. In contrast to our approach, the main objective is to increase523

proof diversity rather than minimize proof length.524

9 Conclusion525

Historically, more research has gone into finding proofs automatically than into526

improving and presenting them. We introduced an approach for minimizing equa-527

tional proofs by mixing and matching the output of separate runs of Vampire528

and Twee, and implemented it in a new tool, Krympa. We used the tool to min-529

imize the proof of problem 650 =⇒ 448 from the Equational Theories Project530

from 62 to 20 steps, thereby providing a fully automatic solution to a challenge531

posed by Tao. We also obtained remarkable reductions on other problems orig-532

inating from the project. The shorter proofs are arguably easier to understand533

by humans and sometimes more general. Our work shows that proof automation534

and readability can go hand in hand.535

Our approach could be extended in several ways. First, it could be generalized536

to support full first- or higher-order logic. Second, alternative lemma abstraction537

strategies could be explored. Third, proofs with more than three segments could538

be synthesized. Fourth, we might want to consider not only the number of steps539

but also term size when measuring proofs, as suggested by Le Floch [12]. Fifth,540

we could try to translate Vampire’s superposition steps to Twee’s structured541

equality chain format.542

Some possible extensions specifically concern the implementation. First, we543

could, following a private suggestion by Martin Suda, explore whether nondefault544

Vampire strategies can produce shorter proofs. Second, since proof generation545

relies heavily on external provers, performance could benefit from better schedul-546

ing of prover invocations, using adaptive time limits. Finally, as the number of547

possible lemma combinations grows rapidly, exploiting parallelism at multiple548

levels—such as lemma re-proving, dependency graph construction, and proof549

construction—would be a natural extension of the current architecture.550

Acknowledgments. We thank Bruno Le Floch, Andrew Reynolds, Stephan551

Schulz, and Uwe Waldmann for fruitful discussions. We thank Martin Suda and552

Mark Summerfield for helpful textual suggestions.553

Blanchette’s research was cofunded by the European Union (ERC, Nekoka,554

101083038). Views and opinions expressed are however those of the authors only555

and do not necessarily reflect those of the European Union or the European556

Research Council. Neither the European Union nor the granting authority can557

be held responsible for them.558

Heule’s research is supported by the NSF under grant DMS-2434625 and559

funding from AFRL and DARPA under Agreement FA8750-24-9-1000.560

16 L. Kondylidou et al.

References561

1. The Lean Language Reference (2025), https://lean-lang.org/doc/reference/562

latest/563

2. Amjad, H.: Compressing propositional refutations. In: Merz, S., Nipkow, T. (eds.)564

AVoCS 2006. Electronic Notes in Theoretical Computer Science, vol. 185, pp. 3–15.565

Elsevier (2006)566

3. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït-567

Kaci, H., Nivat, M. (eds.) Rewriting Techniques, pp. 1–30. Academic Press (1989)568

4. Bachmair, L., Ganzinger, H.: Strict basic superposition. In: Kirchner, C., Kirchner,569

H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 160–174. Springer (1998)570

5. Bártek, F., Bhayat, A., Coutelier, R., Hajdú, M., Hetzenberger, M., Hozzová, P.,571

Kovács, L., Rath, J., Rawson, M., Reger, G., Suda, M., Schoisswohl, J., Voronkov,572

A.: The Vampire diary. In: Piskac, R., Rakamaric, Z. (eds.) CAV 2025. LNCS, vol.573

15933, pp. 57–71. Springer (2025)574

6. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-575

intelligible Isar proofs from machine-generated proofs. J. Automated Reas. 56,576

155–200 (2016)577

7. Bolan, M., Breitner, J., Brox, J., Carlini, N., Carneiro, M., van Doorn, F., Dvorak,578

M., Goens, A., Hill, A., Husum, H., Mejia, H.I., Kocsis, Z.A., Floch, B.L., Bar-on,579

A.L., Luccioli, L., McNeil, D., Meiburg, A., Monticone, P., Nielsen, P., Osazuwa,580

E.O., Paolini, G., Petracci, M., Reinke, B., Renshaw, D., Rossel, M., Roux, C.,581

Scanvic, J., Srinivas, S., Tadipatri, A.R., Tao, T., Tsyrklevich, V., Vaquerizo-Villar,582

F., Weber, D., Zheng, F.: The Equational Theories Project (2025)583

8. Buch, A., Hillenbrand, T.: WALDMEISTER: Development of a high performance584

completion-based theorem prover (1996)585

9. Clune, J., Qian, Y., Bentkamp, A., Avigad, J.: Duper: A proof-producing superposi-586

tion theorem prover for dependent type theory. In: Bertot, Y., Kutsia, T., Norrish,587

M. (eds.) ITP 2024. LIPIcs, vol. 309, pp. 1–20. Leibniz-Zentrum für Informatik588

(2024)589

10. Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O.,590

Szeider, S. (eds.) Theory and Applications of Satisfiability Testing - SAT 2010,591

13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Pro-592

ceedings. Lecture Notes in Computer Science, vol. 6175, pp. 306–312. Springer593

(2010)594

11. Floch, B.L.: Zulip post in “Machine Learning for Theorem Proving:595

A (Semi)-Autoformalization Challenge (650 → 448)”. Zulip (2025),596

available at https://leanprover.zulipchat.com/#narrow/channel/597

219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.598

29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125599

12. Floch, B.L.: Zulip post in “Machine Learning for Theorem Proving:600

A (Semi)-Autoformalization Challenge (650 → 448)”. Zulip (2025),601

available at https://leanprover.zulipchat.com/#narrow/channel/602

219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.603

29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777604

13. Geoff Sutcliffe: Stepping stones in the TPTP World. In: Benzmüller, C., Heule,605

M., Schmidt, R. (eds.) IJCAR 2024. pp. 30–50. LNCS (2024)606

14. Gu, A., Piotrowski, B., Gloeckle, F., Yang, K., Markosyan, A.H.: ProofOptimizer:607

Training language models to simplify proofs without human demonstrations. CoRR608

abs/2510.15700 (2025)609

https://lean-lang.org/doc/reference/latest/
https://lean-lang.org/doc/reference/latest/
https://lean-lang.org/doc/reference/latest/
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777

Tao’s Equational Proof Challenge Accepted 17

15. Janota, M.: Experimental results for Vampire on the Equational Theories Project610

(2025)611

16. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D.,612

Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer (2012)613

17. Kinyon, M.: Zulip post in “Machine Learning for Theorem Proving:614

A (Semi)-Autoformalization Challenge (650 → 448)”. Zulip (2025),615

available at https://leanprover.zulipchat.com/#narrow/channel/616

219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.617

29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204618

18. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,619

J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon620

Press (1970)621

19. Kondylidou, L., Blanchette, J., Heule, M.: Tao’s equational proof challenge ac-622

cepted. Zenodo (2026), https://doi.org/10.5281/zenodo.18624123623

20. Limperg, J., From, A.H.: Aesop: White-box best-first proof search for Lean. In:624

CPP 2023. pp. 253–266. Association for Computing Machinery (2023)625

21. McCune, W.: Prover9 and Mace4 (2005–2010)626

22. de Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.627

In: Bertot, Y., Kutsia, T., Norrish, M. (eds.) CADE 2021. LNCS, vol. 12699, pp.628

625–635. Springer (2021)629

23. Norman, C., Avigad, J.: Canonical for automated theorem proving in Lean. In:630

ITP 2025. LIPIcs, vol. 352, pp. 1–20. Leibniz-Zentrum für Informatik (2025)631

24. Smallbone, N.: Twee: An equational theorem prover. In: Platzer, A., Sutcliffe, G.632

(eds.) CADE 2021. LNCS, vol. 12699, pp. 602–613. Springer (2021)633

25. Stachniak, Z.: Minimization of resolution proof systems. Fundam. Informaticae634

14(1), 129–146 (1991)635

26. Sutcliffe, G.: The 12th IJCAR Automated Theorem Proving System636

Competition—CASC-J12. AI Communications 38, 3–20 (2025)637

27. Sutcliffe, G., Chang, C., McGuinness, D., Lebo, T., Ding, L., da Silva, P.P.: Com-638

bining proofs to form different proofs. In: Fontaine, P., Stump, A. (eds.) PxTP639

2011. pp. 60–73. LNCS (2011)640

28. Tao, T.: Machine learning for theorem proving: A (semi)-autoformalization641

challenge (650 → 448). https://leanprover-community.github.io/archive/642

stream/219941-Machine-Learning-for-Theorem-Proving/, Lean Zulip thread,643

created May 16, 2025644

29. Vyskočil, J., Stanovský, D., Urban, J.: Automated proof compression by invention645

of new definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355,646

pp. 447–462. Springer (2010)647

30. Zhu, T., Clune, J., Avigad, J., Jiang, A.Q., Welleck, S.: Premise selection for a648

Lean hammer. arXiv preprint arXiv:2506.07477 (2025)649

https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://doi.org/10.5281/zenodo.18624123
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/

	Tao's Equational Proof Challenge Accepted
	1 Introduction
	2 Background
	2.1 Vampire and Superposition Proofs
	2.2 Twee and Structured Equational Chain Proofs

	3 Proof Redirection
	4 Proof Generation for Intermediate Lemmas
	5 Proof Construction for the Main Theorem
	5.1 Construction of the Dependency Graph
	5.2 Construction of the First Proof Segment
	5.3 Construction of the Remaining Proof Segments
	5.4 Proof Output

	6 Application to Tao's Challenge
	7 Experiments on Other Equational Proofs
	8 Related Work
	9 Conclusion

