o o » w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Tao’s Equational Proof Challenge Accepted

Lydia Kondylidou'®, Jasmin Blanchette!®, and Marijn J.H. Heule?

! Ludwig-Maximilians-Universitéit Miinchen, Munich, Germany
{1.kondylidou, jasmin.blanchette}@lmu.de
2 Carnegie Mellon University, Pittsburgh, United States
marijn@cmu.edu

Abstract. In the context of the Equational Theories Project, Terence
Tao posed the challenge of finding alternatives to a complicated 62-step
proof found by the Vampire superposition prover. We introduce a proof
minimization tool called Krympa. Using a combination of brute force and
heuristics, and exploiting both Vampire and the Twee equational prover,
the tool reduces the 62-step proof to 20 steps, each corresponding to a
rewrite. In an empirical evaluation, it also performs well on 1431 equa-
tional problems originating from the same project, reducing in particular
a 151-step proof to only 10 steps.

Keywords: Theorem provers - Equational logic - Proof minimization.

1 Introduction

The Equational Theories Project [7], launched in September 2024 by Fields med-
alist Terence Tao, aims at exploring the relations between different equational
theories of magmas. A magma is a basic algebraic structure consisting of a set
equipped with a single binary operation ¢ closed on that set. The project’s first
phase, concluded in April 2025, focused on equational laws for magmas that
contain at most four applications of ©.

The project uses the Lean [22] proof assistant to express proofs and counter-
examples but depends on automatic theorem provers and other external tools.
The problems explored in the project’s first phase all fall within first-order logic’s
unit equality fragment: They consist of a V-quantified equation as the sole axiom
and a V-quantified equation as the proof goal, or conjecture.

For the problem 650 = 448, where 650 denotes the axiom Vz,y,z. z =x ©
(yo ((zox)oy)) and 448 denotes the conjecture Vo, y, z. x = x 0 (y o (z¢ (20 2))),
the Vampire [5] superposition prover found a particularly complex proof, with 62
inference steps, excluding clausification and Skolemization. Given that the proof
is unintelligible, Tao challenged the community to find “an alternate proof, by
whatever means you wish—human, semi-automated, or automated” [28].

One idea could be to run a specialized equational prover, Twee [24], instead of
Vampire, but this results in a very long, 137-step proof. Another approach would
be to use Lean’s automation, such as the aesop [20], canonical [23], duper [9],
and grind [1] tactics and the LeanHammer [30], to reconstruct and compress

https://orcid.org/0009-0001-9875-2627
https://orcid.org/0000-0002-8367-0936
https://orcid.org/0000-0002-5587-8801

39

40

P51

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

2 L. Kondylidou et al.

consecutive superposition steps, in the style of Sledgehammer’s structured proof
reconstruction [6, Sect. 6.3]. This would yield a shorter and more high-level proof,
in which each step may combine multiple rewrites. Our approach is orthogonal.
Our working hypothesis is that Vampire’s 62-step proof, which emerged as the
byproduct of a saturation process, is likely suboptimal. By mixing and match-
ing proofs generated by different automatic provers, as proposed by Sutcliffe et
al. [27], we hope to achieve a shorter, simpler proof.

We introduce Krympa, a tool that minimizes equational proofs by decompos-
ing them into independently provable components and reassembling them into
more concise, intelligible proofs. Specifically, starting from a Vampire-generated
proof, the tool transforms it into a direct proof (Sect. 3) and analyzes its infer-
ences to break it down into intermediate results that serve as candidate lemmas.
Each of these lemmas is then proved independently using Vampire and Twee
(Sect. 4), the two leading systems in the unit equality division of CASC 2025 [26].
The resulting proofs are then combined into a single proof using heuristics that
favor shorter derivations (Sect. 5).

Given the 62-step Vampire proof of 650 = 448, our tool produces a 20-
step proof, where 13 steps are generated by Twee (Sect. 6). In a larger empirical
evaluation, we applied the tool to 1431 provable implications from the Equational
Theories Project and obtained positive results (Sect. 7). In particular, the tool
reduced a 151-step Vampire proof to 10 steps.

Our tool is implemented in Rust, OCaml, and Python. Its source code is avail-
able at https://github.com/kondylidou/Krympa. The files associated with
Tao’s challenge and our empirical evaluation data are also available online [19].

2 Background

We briefly review the Vampire and Twee automatic provers and their associated
proof formats.

2.1 Vampire and Superposition Proofs

Vampire is a saturation-based theorem prover for first-order logic with equality
based on the superposition calculus [4]. It implements highly optimized search
strategies and data structures, and integrates techniques such as literal selection,
term orders, redundancy elimination, strategy scheduling, and portfolios.
Superposition works on implicitly V-quantified clauses. A preprocessor per-
forms clausification and Skolemization. For example, the axiom Vz. f(x) = g(x)
is transformed into f(z) = g(x), where x is a free variable, and the conjecture
Va. f(x) = g(z) is negated and transformed into f(sk) # g(sk), where sk is a
Skolem constant. The objective is to derive the contradictory clause L. For the
unit equality fragment, the calculus’s two relevant inference rules are as follows:

t#u .) t=t" sulXs o
equality resolution ; ; superposition
p(s[t'] M s")

https://github.com/kondylidou/Krympa

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Tao’s Equational Proof Challenge Accepted 3

The equality resolution rule has one premise, ¢ # wu, one conclusion, |, and
one side condition: that ¢t and u are unifiable. The superposition rule has two
premises and one conclusion. The 1 symbol denotes either = or # throughout
the rule. The = and # operators are commutative; for example, the premise ¢t = ¢/
can match the equation f(a) = b either as is or as b = f(a). The premises are
assumed to have disjoint sets of variables, which can be achieved by renaming.
Also in the rule, s[] is a term with a hole, the terms s[u] and s[t'] are obtained
by filling the hole in s[] with u and ¢, and p is a most general unifier of ¢
and u. For example, the most general unifier of the terms h(a,y) and h(z,b) is
{z — a, y — b}; applying it on both terms yields h(a,b). Finally, the rule has
further side conditions, not shown here, that restrict the search space.

Example 1. A subtle case of the superposition rule arises when both premises
are the same clause. Consider the following rule instance, where the variable in
the second premise has been renamed to avoid a clash:

f(f(z)) =g(z) f(f(z")) # g(a’)
f(g()) # g(f(x))
This instance is obtained by taking ¢ := f(f(z)), t’ := g(z), > := #, s[] := f([]),
u = f(a'), s = g(), and p = {a’ — f(z)}. Applying the unifier p to both
premises yields the equation f(f(z)) = g(x) and the disequation f(f(f(z))) #

g(f(z)). The inference replaces the subterm f(f(z)) in the disequation with g(x)
using the equation as a left-to-right rewrite rule, and derives the conclusion. H

superposition

Example 2. Vampire implements parallel superposition, a variant of the super-
position rule in which multiple subterms that match a term are replaced. The
following inference illustrates this:

b=a h(b,a,b)#h(a,b,a)
parallel superposition
h(a,a,a) # h(a,a,a) |

Superposition proofs are represented in a linear format. They are refutational
and show how to derive L from the input axioms and the negated conjecture.

Example 3. The following is a linear superposition proof from clauses 1-3:

l.a=b axiom

2. f(x) == axiom

3. h(f(b),a) # h(a,f(b)) negated conjecture

4. h(b,a) # h(a,b) by parallel superposition from 2 and 3

5. h(a,a) # h(a,a) by parallel superposition from 1 and 4

6. L by equality resolution from 5 |

2.2 Twee and Structured Equational Chain Proofs

Twee is an automatic prover specialized for equational reasoning. It is based on
the unfailing completion procedure [3], an extension of Knuth-Bendix comple-
tion [18]. In the DISCOUNT and Waldmeister tradition [8], Twee’s proofs are
structured as a sequence of lemmas, where each lemma and the conjecture are

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

4 L. Kondylidou et al.

proved by a chain of equalities. Twee introduces lemmas if they are needed more
than once. Twee proofs are arguably more readable than Vampire proofs. As
with superposition, quantifiers are eliminated by a preprocessor.

Example 4. The following is a Twee-style proof of goal 1 from axioms 1 and 2:

Axiom 1: a=b Goal 1: h(f(b),a) = h(a,f(b))
Axiom 2: f(z) =z Prﬁ(()if'(b)’ 2)
Lemma 3: f(b) = a = { by lemma 3 }
Proof: h(a, a)

f(b) = { by lemma 3 right-to-left }
= { by axiom 1 right-to-left } h(a,f(b))

f(a)
= { by axiom 2 }
a u

3 Proof Redirection

Vampire generates proofs by refutation, whereas our mix-and-match approach
requires direct proofs. To bridge this gap, we transform Vampire proofs into
direct proofs. In the following sections, we will always use direct proofs.

To redirect a proof by refutation in equational logic, we first introduce 3
quantifiers for Skolem constants and V quantifiers for variables. For example,
h(z,sk) # x is transformed into 3z. V. h(x, z) # x. Then we apply the contra-
positive to all inferences in which a premise and the conclusion are disequations
to obtain positive equations. Thus, the inference

h(a,y) =b h(x,sk) #x
b+#a

superposition
becomes
Vy.h(a,y)=b b=a
Vz. 3z, h(z,2) =z

Equality resolution inferences from a premise ¢ # t are omitted since their con-
trapositives derive trivial equations.

Example 5. The following is a direct proof obtained from Example 3’s proof
by refutation.

l.a=b axiom

2. Vz. f(z) =2 axiom

3. h(b’a) = h(a7 b) from 1 and h(a7a) = h(a7a)

4. h(f(b),a) = h(a,f(b)) from 2 and 3 m

4 Proof Generation for Intermediate Lemmas

Our approach starts by translating the main theorem into a TPTP [13] input
problem and running Vampire to produce an initial proof. This proof is turned

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Tao’s Equational Proof Challenge Accepted 5

into a direct proof, then decomposed into intermediate lemmas. For each lemma,
we generate corresponding problems, with the objective of proving them using
Vampire and Twee. Three problem variants are generated:

1. Big-step problems contain the axioms together with the lemma as the con-
jecture, and nothing else. This allows us to investigate whether a radically
new proof, with different intermediate steps, can be found.

2. Small-step problems contain the axioms together with the lemma as the
conjecture, and all lemmas derived prior to this lemma in the initial proof as
additional axioms. This allows us to investigate whether a somewhat similar
variant of the original derivation can be found.

3. Abstracted problems are variants of big-step problems that contain the ax-
ioms together with an abstracted version of the lemma as the conjecture.
Specifically, selected subterms of the lemma—for example, expressions such
as x ¢ y that do not contain nested applications—are replaced by fresh vari-
ables. This allows us to investigate whether a more general version of the
lemma is provable, ideally with a shorter, more abstract proof.

Each problem is submitted to the two provers. If a proof is found for a small-step
problem, we expand it to recursively include the shortest proofs of the lemmas
used as axioms for the axioms referenced in the proof. Ties are broken arbitrarily.
Note that abstracted problems might be unprovable.

Next, we compare the proofs of the three problem variants corresponding to
the same lemma. If the abstracted problem has the shortest proof, the lemma
it proves is replaced in all small-step problems where it appears as an axiom
with the generalized lemma from the abstracted problem. Each updated small-
step problem is then re-proved, and if the result has fewer steps, we replace the
small-step problem’s proof with it.

The length of a Vampire-generated proof is the number of steps of its redi-
rected proof, excluding preprocessing. For Twee, the length of a proof is the
cumulative number of equalities in the equality chains. Thus, the Vampire proof
in Example 5 has two steps, and the Twee proof in Example 4 has four steps.

5 Proof Construction for the Main Theorem

Based on the intermediate lemmas’ proofs generated in the previous phase, our
approach constructs a proof of the main theorem. The proof generally consists
of three segments. The first segment starts with the axioms and ends with the
derivation of a so-called departure lemma. The second segment derives a so-called
arrival lemma. The third segment derives the conjecture. Different candidates
are considered as the departure and arrival lemmas, yielding different proofs.
The proof with the fewest steps is chosen.

Specifically, we first identify up to six intermediate lemmas that arise close to
the end of the initial proof, including the conjecture, and consider them as can-
didate arrival lemmas. For each of these, we consider its transitive dependencies

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

6 L. Kondylidou et al.

as candidate departure lemmas. Then, for each candidate departure lemma, we
construct a problem with the axioms and the departure lemma’s dependencies
as the axioms and the departure lemma itself as the conjecture. We run both
provers and, if at least one succeeds, we use the shorter result as the proof of the
first segment, unless an even shorter proof was generated in the previous phase.

Next, for each pair of candidate departure and arrival lemmas, we generate
a new problem with the original axioms, the departure lemma, and its depen-
dencies as axioms and the arrival lemma as the conjecture. We run both provers
and, if at least one succeeds, we use the shorter result as the proof of the second
segment, unless an even shorter proof was generated earlier. Finally, we generate
a new problem with the original axioms, the departure lemma, its dependencies,
and the arrival lemma as axioms and the original conjecture as the conjecture.
We run both provers and, if at least one succeeds, we use the shorter result as the
proof of the third segment, unless an even shorter proof was generated earlier.

Without the separation into segments, proof minimization could be intractable
due to combinatorial explosion. We chose to work with three segments as a trade-
off between performance and flexibility.

Example 6. Before we review the three-segment proof construction approach
in detail, let us look at an example. The following sketch represents an initial
seven-step Vampire-generated redirected proof of a theorem A — C"

A axiom

Ly from A and A
Lo from A and L
L3 from L1 and L2
Ly from Lo and L3
Ls from L3 and L4
Lg from A and Ls
C from L5 and Lg

Here, A denotes the axiom, and Lq,..., Lg are the lemmas used to derive the
conjecture C.
In the first phase, for each lemma Lq,..., Lg, we construct big-step, small-

step, and abstracted problems and try to prove them using Vampire and Twee,
retaining the shortest proof for each lemma. Suppose the following: The shortest
proof of L, has one step and is obtained from its big-step problem using Vampire;
for Lo and Ls, the shortest proofs are obtained from their small-step problems
using Twee; for L4, the shortest proof is obtained from its abstracted problem
using Twee; and for Ls and Lg, the shortest proofs are obtained from their
small-step problems using Vampire.

In the next phase, the last five lemmas, Lo, ..., Lg, and the conjecture C' are
considered as candidate arrival lemmas. We focus on Lg. The proof below, found
by Vampire for Lg’s small-step problem, is the shortest proof for Lg:

A axiom
Ly from A and A
Lo from A and L,

219

220

221

222

223

224

225

226

227

228

229

230

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

Tao’s Equational Proof Challenge Accepted 7

Ls from L1 and Ly
L4 from L2 and L3
Ly from L3 and L4
Lg from A and Ls

This proof happens to be identical to the first six steps of the initial proof, but
in general it could be different.

Next, lemmas Ly to Ls are considered as candidate departure lemmas. We
focus on L. The proof of conjecture C' is constructed by concatenating three
segments. For the first segment, we create a new problem with A, Ly, and Lo
as axioms, since they are dependencies of the departure lemma L3 in the above
proof of Lg, and L3 as the conjecture. We run both provers on this problem
and obtain a two-step Vampire proof of Lz from A, L;, and a new lemma L}.
Since L is treated as an axiom, we must include its proof to obtain a complete
proof of Ls. In the first phase, we found a one-step Vampire proof of L; from
the axiom A, so we use it. In summary, the proofs of L; and L3 form the first
segment, which consists of one step for L and two steps for Ls.

For the second segment, we create a new problem with A, Ly, L), and L3 as
axioms and the arrival lemma Lg as the conjecture. We run both provers on this
problem and obtain a two-step Twee proof of Lg from L; and L3. Together with
the first segment, this yields a five-step proof of Lg. Since this proof is shorter
than the six-step proof of Lg presented above, it is used as the second segment.

For the third segment, we create a new problem with A, Ly, L, the departure
lemma L3, and the arrival lemma Lg as axioms and C' as the conjecture. We run
both provers on this problem and obtain a two-step Twee proof of C' from L}
and Ls. Since this proof does not use the arrival lemma Lg, the second segment
is excluded from the result. Concatenating the first and third segments yields a
new five-step proof of C:

A axiom

Ly from A

L from A and L,

Ls from L, and L}

C by a two-step equality chain using L} and Ls

Finally, other combinations of candidate departure and arrival lemmas are
also considered, and the shortest proof is retained. |

5.1 Construction of the Dependency Graph

We identify lemmas occurring close to the end of the derivation as candidate
arrival lemmas. Different candidates typically depend on substantially different
subsets of earlier lemmas. Each candidate therefore induces its own dependency
chain, and different choices can lead to substantially different proof lengths. We
consider six candidate arrival lemmas extracted from the initial proof, including
the conjecture itself, since our approach may produce a shorter proof of the
conjecture by reproving it directly from a minimized dependency set.

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

201

292

293

294

295

296

297

8 L. Kondylidou et al.

For every candidate, we build a dependency graph that captures the lemmas
required to derive it. Dependencies are determined from the shortest Vampire
or Twee proof obtained for each lemma. Given that we generate three problem
variants and run two provers, up to six proofs per lemma are considered. A
lemma ¢ is considered to directly depend on a lemma ¢ if the shortest proof
of £ uses ¢’ as an axiom. Thus, for big-step and abstracted problems, only the
original axioms can be dependencies. For small-step problems, each intermediate
step in a Vampire proof and each lemma in a Twee proof is considered a lemma.

The dependency graph associated with a candidate arrival lemma is a di-
rected acyclic graph (DAG) whose nodes correspond to lemmas and whose edges
express derivability between them. Formally, let V' be a finite set of lemmas, each
represented by an equation and a set of dependencies on other lemmas. We con-
struct a DAG (V, E), where each vertex £ € V corresponds to a lemma and each
edge (¢,¢') € FE indicates that lemma ¢ directly depends on lemma ¢'. As an
optimization, we merge lemmas that are identical up to the naming of variables,
keeping the shortest proof.

5.2 Construction of the First Proof Segment

For each candidate arrival lemma, we investigate whether all lemmas included in
its dependency graph are needed to derive it or whether a shorter proof can be
obtained by choosing a departure lemma and recomputing parts of the derivation
by combining proofs generated by the provers.

As candidate departure lemmas, we consider all lemmas in the DAG. Let ¢
be a candidate departure lemma. If ¢ depends only on the axioms, we take the
shortest big-step, small-step, or abstracted proof previously found by Vampire or
Twee. Otherwise, we build a problem that includes £’s dependencies in the DAG
as axioms and the departure lemma as the conjecture, and we run Vampire and
Twee. If at least one of them succeeds, we choose the shorter proof as £’s proof.
This derivation, together with the shortest proofs of £’s dependencies generated
for the big-step, small-step, or abstracted problems, forms the first segment of
the final proof. However, if we found an even shorter proof for the big-step, small-
step, or abstracted problem, we use that proof instead. For small-step proofs, we
must also include the proofs of the intermediate lemmas encoded as axioms.

5.3 Construction of the Remaining Proof Segments

To construct the second segment, we generate a problem with the departure
lemma and its dependencies as axioms and the arrival lemma as the conjecture,
and run both provers. If at least one of them succeeds, we choose the shorter
proof as the proof of the arrival lemma. As above, we fall back on the proof of
a big-step, small-step, or abstracted problem if it is even shorter.

Finally, to construct the third segment, we generate a problem with the
departure lemma, the arrival lemma, and their dependencies as axioms and the
original conjecture as the conjecture, and invoke both provers. If at least one of

298

299

300

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

323

324

325

326

327

328

329

Tao’s Equational Proof Challenge Accepted 9

them succeeds, we choose the shorter proof as the proof of the original conjecture.
As above, we fall back on a previously derived proof if it is even shorter.

The final proof is obtained by concatenating the three segments. The proof
might contain unreferenced lemmas; these are pruned.

5.4 Proof Output

Our tool generates the minimized proof in a native format, from which two Lean
outputs are produced. The first Lean output is a step-by-step formalization using
the calc tactic to reconstruct chains of equalities. It applies the duper tactic
to fill in the subproofs. For example, a proof of t; = t5 = t3 = t4 would be
represented by

calc
t1 = tp := by duper ...
_ = t3 = by duper ...
_ = ta4 = by duper ...

where the ellipses stand for duper’s arguments. The second Lean output is a more
compact Lean formalization in which each lemma is proved directly using Lean’s
automation without including the intermediate steps in chains of equalities.

6 Application to Tao’s Challenge

We implemented our approach and tried the resulting tool, Krympa, on Tao’s
challenge theorem 650 = 448:

Ve,y,z.xe=20 (yo ((zox) oy))) =Vr,y,z.z=z0 (yo (20 (x o 2)).

Our tool first ran Vampire to obtain an initial 62-step superposition proof. Then
it constructed 62 problems of each variant (big-step, small-step, and abstracted)
and tried to prove them using Vampire and Twee. Among the six candidate
arrival lemmas, the shortest proof was found by selecting

Ve,y,z.x =z ¢ ((y o ((z 0 y) o y)) o x). (lemma 9)

The coloring highlights repeating patterns. Next, our tool constructed the de-
pendency graph for this lemma. The DAG contained 37 lemmas. It was based
on big- and small-step proofs.

Among the 37 candidate departure lemmas, our tool found the shortest proof
by selecting

Va,y, z,w. (x o ((y o x) o x)) o z2=
((zo((yox)oax)oz)o(wo ((xo(lyox)oax)) ow)). (lemmaT)

According to the DAG, the shortest proof of this lemma was found by running
Vampire on the small-step problem consisting of the axiom and the following
lemma, dependencies:

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

353

354

10 L. Kondylidou et al.

Va,y,z,w.x o ((y o z) o x)=

(xo((yoz)ox))o(wo (z0w)) (lemma 1)
Vo, y, z,w,v,u. 0 ((y o ((z0w) oy)) ox)=

(zo(lyo((zow)oy))ox)o(wo ((uo(weou)owv)) (lemma 2)
Va,y, z,w,v.x 0 (y © x) =

(xo(yox))o(zo((wo ((veoy)ow))oz)) (lemma 3)
Vo, y, z,w,v.x 0 (y o x) =

(xo(yox)o((zo(yoz)o(wo((veoy) ow))) (lemma 4)

Vo, y,z,w.x o (yo (zoy) oy)) ox)=
(o ((yo((zoy)oy)oa)o
(wo ((yo((zoy)oy))ow)) (lemma 5)
Vo, y,z,w. (x o ((y o x) 0 x)) 0 2=
(2o ((yoz)ox)oz)o((weo((xo(yor)or))ow)o
(zo ((zo((yox)oa)) o z))). (lemma 6)

Following the inference steps of the initial Vampire proof, our tool derived
lemma 1 by applying a superposition inference with the axiom z =z ¢ (y ¢ ((z ¢
x) ¢ y)) as the first premise and a renamed copy 2’ = 2z’ o (3 ¢ ((z' ¢ 2’) 0 ¢')) as
the second premise. The most general unifier of the first premise’s right-hand side
and the subterm 2’ ¢ 2 of the second premise is {2’ — y o ((z 0 z) ¢ y), 2’ — z}.
Applying the unifier to both premises yields the equations z =z ¢ (y ¢ ((z 0) ©
y))andyo ((zox)oy) =(yo((zoz)oy))o(y o((zo(yo((zox)oy)))oy)).
The superposition inference replaced the subterm = ¢ (y ¢ ((z ¢) ¢ y)) in the
second equation with = using the first equation as a right-to-left rewrite rule,
and thus derived lemma 1, up to the naming of variables. Lemmas 2 to 7 were
derived similarly following the steps of the initial Vampire proof.

Next, from the axiom and lemma 7, our tool proved the arrival lemma
(lemma 9) using Twee. For this proof, Twee introduced the auxiliary lemma

Vo, y, z,w. (y o ((z 0y) oy)) ow=
(o ((zoy)oy))ow) o((yo((zoy) oy)) o) (lemma 8)

Finally, assuming all the lemmas derived so far, our tool proved the conjecture
from lemmas 5 and 9 using Twee. The resulting proof has 20 steps, including
three Twee-generated chains of equalities.

Below we present the final proof adapted from our tool’s detailed Lean out-
put. Instead of relying on proof automation, we use the nth_rw tactic, which
performs a single rewrite step, where the numeric argument indicates which
matching occurrence should be rewritten. In one case, two numbers are sup-
plied, corresponding to a parallel rewrite.

class Magma (o : Type _) where
op: = a—a

infix:65 "¢ " => Magma.op

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

383

384

385

386

387

388

389

390

392

393

394

396

397

398

399

400

401

402

403

404

Tao’s Equational Proof Challenge Accepted

theorem Equation650_implies_Equation448 (G : Type _) [Magma G]
(op_law : Vxyz: G, x=x0(yo((zox)oy))) :
Vixyz:G, x=30(yo(z0o((x02))) =
have lemmal (x y z w : G) :
xo((yoz)ox) = (xo((yoz)ox))o(wo(zow)) = by
nth_rw 3 [op_law z x y]
exact op_law (x¢ ((yoz)ox)) w z

have lemma2 (x yzwvu: G) :
xo ((yo ((zow)oy)) ox) =
xo((yo((zowoy))ox))o(vo ((uo(wou)) ov)) := by
nth_rw 1 2 [lemmal y z w u]
exact lemmal x (yo ((zow) oy)) (uo (wouw)) v

have lemma3 (x y z w v : G) :
xo(yox) = (xo(yox))o(zo ((wo ((voy)ow)) 0z)) = by
nth_rw 1 [lemmal w v y x]
exact op_law (xo (yox)) z (wo ((voy)ow))

have lemma4d (x y zw v : G) :
xo(yox) = (xo(yox))o((zo(yoz)) o (wo ((voy)ow))) := by
nth_rw 1 [lemmal w v y z]
exact lemma3 x y (zo(yoz)) wv

have lemmab (x y z w : G) :
xo((yo((zoy) oy)) ox) =
(xo ((yo((zoy) oyl ox)) o (wo ((yo ((zoy)oy)) ow)) = by
nthorw 1 [lemma2 wy z y x ((zoy) oy)]
exact lemmad x (yo ((zoy)oy)) w x ((zoy) oy)

have lemma6 (x y z w : G) :
(xo((yox)ox)) oz =
(o ((yox)ox))oz)o ((wo ((xo ((yox) ox)) ow)) ©
(zo ((xo ((yox) ox))oz))) = by
nth_rw 1 [lemmab z x y w]
exact op_law ((xo ((yox)ox))oz) (wo ((xo((yox)ox))ow) z

have lemma7 (x y z w : G) :
(xo((yox)ox))oz =
(xo((yox)ox))oz)o(wo ((xo ((yox)ox)) ow)) = by
nth_rw 1 [lemmab w x y 2]
exact lemma6 x y z w

have lemma8 (x y z w : G) :
((xo((yox)ox))oz) o ((xo ((yox) ox)) ow) =
(xo ((yox)ox)) oz := by
let T := x0 ((yox) ox)
calc
(Toz)o (Tow) =

((Toz) o ((Tow) o ((To(Tow)) o ((wo (Tow)) o (To(Tow))))))

by

11

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

424

445

446

447

448

449

450

451

12 L. Kondylidou et al.

nth_rw 1 [<-op_law]
= ((Toz) o ((Tow) o ((To(Tow)) o ((wo(Tow)) o
(To ((Tow) o (wo (Tow)))))))) = by
nth_rw 1 [<lemma7]
= ((Toz) o ((Tow) o ((To(Tow)) o ((wo(Tow)) o
((To (Tow) o (wo (Tow)))) o (((Tow) o (wo (Tow))) ¢
(To((Tow) o (wo (Tow)))))))))) = by
nth_rw 2 [<lemma7]
= ((Toz) o ((Tow) o ((To(Tow)) o (wo (Tow))))) := by
nth_rw 1 [<op_law]
= ((Toz) o ((Tow) o (To(Tow)))) := by
nth_rw 1 [<lemma7]
- = (zo((yox)ox))oz) = by
nth_rw 1 [<lemma7]

have lemma9 (x y z : G) :
(xo((yo((zoy) oy))ox)) = x := by
calc
(xo ((yo ((zoy)oy)) ox)) =
(xo(((yo((zoy)oy)) ox) o ((yo ((Zzoy) oy)) ©x))) = by
nth_rw 1 [lemma8]
- = o (((yo((zoyp) oyl ox) o (((yo ((zoy) oy)) ox) ©
((yo ((zoy)oy)) ox)))) = by
nth_rw 2 [lemma8]
= x := by
nth_rw 1 [«-op_law]

show _ by
intros x y z
calc
x = x0((xo ((yox)ox)) ox) := by
nth_rw 1 [lemma9]
o= o ((xo(yox)ox))ox)) o ((yo(zo (x02))) ¢
(xo((yox)ox))o(yo(zo(x02))))) = by
nth_rw 1 [<-lemma5]
_=x0((yo(zo(xoz))) o ((xo ((yox)ox)) o
(yo (zo (x02))))) := by
nth_rw 1 [lemma9]
=x0(yo(zo(x02))) := by
nth_rw 1 [lemma9]

7 Experiments on Other Equational Proofs

To assess the general potential of our approach, we evaluated our tool on a set of
equational theorems obtained from the Equational Theories Project repository
[7]. We selected all problems in the 13 Lean files Proofs1 to Proofs13 that have
a proof and translated them to TPTP problem files, yielding 1431 benchmarks.

For each file, we invoked our tool’s TPTP problem generator, which parses
the Lean theorems and produces corresponding TPTP problem files. For each

452

453

454

456

457

458

459

460

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

Tao’s Equational Proof Challenge Accepted 13

problem, our tool was given 2700 seconds to produce a minimized proof using
Vampire to find the initial proof and Vampire and Twee to find subproofs; on
failure, the initial Vampire proof was output. A time limit of 10 seconds was
used for each prover invocation. The experiments were conducted on a server
equipped with a dual-socket AMD EPYC 9965 system (384 cores, 768 threads)
running at 2.25-3.70 GHz with 3 TiB of DDR5 ECC RAM, and running Debian
GNU/Linux 13 (kernel 6.17.13+deb13-amd64).

Overall, proofs for the 13 Lean files have an average length of 6.6 steps before
minimization and 4.5 steps after minimization using the combination of small-
step and abstracted problems and both provers. This corresponds to a 31.5%
decrease, showing that even short proofs can often be made shorter.

Since longer proofs present more opportunities for minimization, we now fo-
cus on problems whose initial proofs have at least 15 steps. Table 1 compares
proof lengths before and after minimization. The “Avg. before” column shows the
average number of inference steps in the initial Vampire proofs. The remaining
columns report the average proof length after minimization under four configu-
rations, which differ in which problem variants are used to generate candidate
lemmas: “BA” denotes the combination of the big-step and abstracted variants;
“SA” denotes the combination of the small-step and abstracted variants; “BS”
denotes the combination of the big- and small-step variants; and “BSA” denotes
the combination of all three variants.

The results show an often substantial reduction in proof length. SA generally
yielded the shortest proofs. Across all problems for the 13 Lean files, the average
reduction with SA is 56.7%. BS and BSA also produced substantial reductions,
whereas BA generally yielded the least improvements.

Table 1. Comparison of proof lengths before and after minimization for problems with
initial proofs of at least 15 steps

File Num. problems Avg. before Avg. after

BA SA BS BSA
Proofsl 135 17.3 16.0 13.1 13.3 13.3
Proofs2 117 16.9 14.4 11.5 11.5 11.5
Proofs3 108 19.3 15.6 109 10.7 10.9
Proofs4 125 19.1 14.3 10.9 11.4 11.4
Proofsb 116 20.1 17.6 12.8 11.9 11.9
Proofs6 115 25.6 18.9 12.5 12.6 12.6
Proofs7 117 37.2 19.7 11.8 11.9 11.9
Proofs8 114 24.4 15.6 12.3 13.1 13.1
Proofs9 112 39.8 29.0 13.1 14.1 14.1
Proofs10 101 21.5 16.0 8.0 11.0 11.0
Proofsil 110 25.4 22.4 13.0 14.0 14.0
Proofsi12 123 24.6 16.5 8.0 8.5 8.5

Proofs13 38 35.3 277 9.1 10.1 10.1

477

478

479

480

481

482

484

485

486

487

488

489

490

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

14 L. Kondylidou et al.

It might seem counterintuitive that SA, which does not consider big-step
problems, outperforms BSA. However, the nonmonotonicity is to be expected.
Provers are nondeterministic, especially when invoked with a time limit. More
importantly, our approach makes different heuristic choices when constructing
the three proof segments depending on which problem variants are used. As a
result, SA might find a short proof that escapes BSA.

The reduction in proof length is especially noticeable in individual cases. The
problem 2666 = 3460 has a Vampire proof with 51 inference steps, which our
tool reduces to only 12 single rewrite steps, and 2923 = 2628 is reduced from
180 steps to only 34. The problem 3569 = 3957 is reduced from 92 to 23 steps
and, even more dramatically, 3957 => 3971 is reduced from 141 steps to only 23.
Furthermore, 2860 = 2660 is reduced from 44 to 14 steps, and 723 = 872 goes
from 57 to 13 steps. Finally, 947 =—> 3897 underwent the largest reduction, from
151 to 10 steps. Overall, these results demonstrate that our approach produces
shorter proofs across a diverse set of equational theorems.

8 Related Work

At least two other researchers took on Tao’s challenge. Kinyon [17] found a 24-
step proof (excluding preprocessing) of 650 = Vz,y. x = x ¢ y using Prover9
[21], from which 650 = 448 follows by instantiation. Later, Le Floch [11] devel-
oped a pen-and-paper proof and translated it to Lean. The Lean proof relies on
only 14 rewrite steps but includes additional reasoning as proof terms, and two
of the rewrite steps are parallel, so the overall length is similar to ours. The proof
idea is “loosely based” on the output of multiple Prover9 runs “with intermediate
results thrown in as assumptions or as goals”™—in essence, a manual approxima-
tion of our approach. Also in the context of the Equational Theories Project,
Janota [15] evaluated Vampire on the project’s problems and showed that com-
bining superposition with finite model finding can solve almost all problems.

We are aware of little work on automated proof minimization. Stachniak
[25] designed an algorithm for constructing resolution proofs in propositional
logics known as strongly finite logics. Amjad [2] and Cotton [10] introduced
techniques for minimizing propositional resolution proofs. Vysko¢il et al. [29]
proposed to compress proofs by inventing new definitions using a heuristics based
on substitution trees. Gu et al. [14] developed ProofOptimizer, which uses large
language models to simplify Lean proofs.

Some SAT (satisfiability) and SMT (satisfiability modulo theories) solvers
can minimize the number of axioms needed for a proof, but the result can be a
longer proof. SAT solvers commonly interleave search, which can be expressed
as resolution steps, with formula-rewriting techniques that go beyond resolution.
This interleaving, known as inprocessing [16], is highly effective and often yields
both faster solving times and shorter proofs than either approach in isolation.

The idea of automatically mixing and matching proofs is not new. Sutcliffe
et al. [27] introduced a method for combining automatically generated proofs to
generate new ones. Their proofs are represented as DAGs, enabling the identifi-

520

521

522

523

524

525

526

527

528

529

530

532

533

535

536

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Tao’s Equational Proof Challenge Accepted 15

cation and replacement of subproofs across different proofs. Proof combination
is guided by heuristics that measure structural similarity, and a greedy search
strategy is used to explore alternative combinations that yield proofs differing
from the originals. In contrast to our approach, the main objective is to increase
proof diversity rather than minimize proof length.

9 Conclusion

Historically, more research has gone into finding proofs automatically than into
improving and presenting them. We introduced an approach for minimizing equa-
tional proofs by mixing and matching the output of separate runs of Vampire
and Twee, and implemented it in a new tool, Krympa. We used the tool to min-
imize the proof of problem 650 = 448 from the Equational Theories Project
from 62 to 20 steps, thereby providing a fully automatic solution to a challenge
posed by Tao. We also obtained remarkable reductions on other problems orig-
inating from the project. The shorter proofs are arguably easier to understand
by humans and sometimes more general. Our work shows that proof automation
and readability can go hand in hand.

Our approach could be extended in several ways. First, it could be generalized
to support full first- or higher-order logic. Second, alternative lemma abstraction
strategies could be explored. Third, proofs with more than three segments could
be synthesized. Fourth, we might want to consider not only the number of steps
but also term size when measuring proofs, as suggested by Le Floch [12]. Fifth,
we could try to translate Vampire’s superposition steps to Twee’s structured
equality chain format.

Some possible extensions specifically concern the implementation. First, we
could, following a private suggestion by Martin Suda, explore whether nondefault
Vampire strategies can produce shorter proofs. Second, since proof generation
relies heavily on external provers, performance could benefit from better schedul-
ing of prover invocations, using adaptive time limits. Finally, as the number of
possible lemma combinations grows rapidly, exploiting parallelism at multiple
levels—such as lemma re-proving, dependency graph construction, and proof
construction—would be a natural extension of the current architecture.

Acknowledgments. We thank Bruno Le Floch, Andrew Reynolds, Stephan
Schulz, and Uwe Waldmann for fruitful discussions. We thank Martin Suda and
Mark Summerfield for helpful textual suggestions.

Blanchette’s research was cofunded by the European Union (ERC, Nekoka,
101083038). Views and opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can
be held responsible for them.

Heule’s research is supported by the NSF under grant DMS-2434625 and
funding from AFRL and DARPA under Agreement FA8750-24-9-1000.

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

16

L. Kondylidou et al.

References

10.

11.

12.

13.

14.

The Lean Language Reference (2025), https://lean-lang.org/doc/reference/
latest/

. Amjad, H.: Compressing propositional refutations. In: Merz, S., Nipkow, T. (eds.)

AVoCS 2006. Electronic Notes in Theoretical Computer Science, vol. 185, pp. 3-15.
Elsevier (2006)

Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Ait-
Kaci, H., Nivat, M. (eds.) Rewriting Techniques, pp. 1-30. Academic Press (1989)
Bachmair, L., Ganzinger, H.: Strict basic superposition. In: Kirchner, C., Kirchner,
H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 160-174. Springer (1998)

Bartek, F., Bhayat, A., Coutelier, R., Hajdu, M., Hetzenberger, M., Hozzovéa, P.,
Kovéacs, L., Rath, J., Rawson, M., Reger, G., Suda, M., Schoisswohl, J., Voronkov,
A.: The Vampire diary. In: Piskac, R., Rakamaric, Z. (eds.) CAV 2025. LNCS, vol.
15933, pp. 57-71. Springer (2025)

Blanchette, J.C., Béhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible Isar proofs from machine-generated proofs. J. Automated Reas. 56,
155-200 (2016)

Bolan, M., Breitner, J., Brox, J., Carlini, N., Carneiro, M., van Doorn, F., Dvorak,
M., Goens, A., Hill, A., Husum, H., Mejia, H.I., Kocsis, Z.A., Floch, B.L., Bar-on,
A.L., Luccioli, L., McNeil, D., Meiburg, A., Monticone, P., Nielsen, P., Osazuwa,
E.O., Paolini, G., Petracci, M., Reinke, B., Renshaw, D., Rossel, M., Roux, C.,
Scanvic, J., Srinivas, S., Tadipatri, A.R., Tao, T., Tsyrklevich, V., Vaquerizo-Villar,
F., Weber, D., Zheng, F.: The Equational Theories Project (2025)

Buch, A., Hillenbrand, T.: WALDMEISTER: Development of a high performance
completion-based theorem prover (1996)

Clune, J., Qian, Y., Bentkamp, A., Avigad, J.: Duper: A proof-producing superposi-
tion theorem prover for dependent type theory. In: Bertot, Y., Kutsia, T., Norrish,
M. (eds.) ITP 2024. LIPIcs, vol. 309, pp. 1-20. Leibniz-Zentrum fiir Informatik
(2024)

Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O.,
Szeider, S. (eds.) Theory and Applications of Satisfiability Testing - SAT 2010,
13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6175, pp. 306-312. Springer
(2010)

Floch, B.L.: Zulip post in “Machine Learning for Theorem Proving:
A (Semi)-Autoformalization Challenge (650 — 448)”. Zulip (2025),
available at https://leanprover.zulipchat.com/#narrow/channel/
219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.
29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
Floch, B.L.: Zulip post in “Machine Learning for Theorem Proving:
A (Semi)-Autoformalization Challenge (650 — 448)”. Zulip (2025),
available at https://leanprover.zulipchat.com/#narrow/channel/
219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.
29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
Geoff Sutcliffe: Stepping stones in the TPTP World. In: Benzmiiller, C., Heule,
M., Schmidt, R. (eds.) IJCAR 2024. pp. 30-50. LNCS (2024)

Gu, A., Piotrowski, B., Gloeckle, F., Yang, K., Markosyan, A.H.: ProofOptimizer:
Training language models to simplify proofs without human demonstrations. CoRR
abs/2510.15700 (2025)

https://lean-lang.org/doc/reference/latest/
https://lean-lang.org/doc/reference/latest/
https://lean-lang.org/doc/reference/latest/
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518970125
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/568313777

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

633

634

635

636

637

638

639

640

642

643

644

645

646

647

648

649

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Tao’s Equational Proof Challenge Accepted 17

Janota, M.: Experimental results for Vampire on the Equational Theories Project
(2025)

Jarvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D.,
Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355-370. Springer (2012)
Kinyon, M.: Zulip post in “Machine Learning for Theorem Proving:
A (Semi)-Autoformalization Challenge (650 — 448)”. Zulip (2025),
available at https://leanprover.zulipchat.com/#narrow/channel/
219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.
29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263-297. Pergamon
Press (1970)

Kondylidou, L., Blanchette, J., Heule, M.: Tao’s equational proof challenge ac-
cepted. Zenodo (2026), https://doi.org/10.5281/zenodo. 18624123

Limperg, J., From, A.H.: Aesop: White-box best-first proof search for Lean. In:
CPP 2023. pp. 253-266. Association for Computing Machinery (2023)

McCune, W.: Prover9 and Mace4 (2005-2010)

de Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.
In: Bertot, Y., Kutsia, T., Norrish, M. (eds.) CADE 2021. LNCS, vol. 12699, pp.
625-635. Springer (2021)

Norman, C., Avigad, J.: Canonical for automated theorem proving in Lean. In:
ITP 2025. LIPIcs, vol. 352, pp. 1-20. Leibniz-Zentrum fiir Informatik (2025)
Smallbone, N.: Twee: An equational theorem prover. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS, vol. 12699, pp. 602—-613. Springer (2021)

Stachniak, Z.: Minimization of resolution proof systems. Fundam. Informaticae
14(1), 129-146 (1991)

Sutcliffe, G.: The 12th IJCAR Automated Theorem Proving System
Competition—CASC-J12. AT Communications 38, 3-20 (2025)

Sutcliffe, G., Chang, C., McGuinness, D., Lebo, T., Ding, L., da Silva, P.P.: Com-
bining proofs to form different proofs. In: Fontaine, P., Stump, A. (eds.) PxTP
2011. pp. 60-73. LNCS (2011)

Tao, T.: Machine learning for theorem proving: A (semi)-autoformalization
challenge (650 — 448). https://leanprover-community.github.io/archive/
stream/219941-Machine-Learning-for-Theorem-Proving/, Lean Zulip thread,
created May 16, 2025

Vyskoéil, J., Stanovsky, D., Urban, J.: Automated proof compression by invention
of new definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355,
pp. 447-462. Springer (2010)

Zhu, T., Clune, J., Avigad, J., Jiang, A.Q., Welleck, S.: Premise selection for a
Lean hammer. arXiv preprint arXiv:2506.07477 (2025)

https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://leanprover.zulipchat.com/#narrow/channel/219941-Machine-Learning-for-Theorem-Proving/topic/A.20.28semi.29-autoformalization.20challenge.3A.20650.3D.3E448/near/518961204
https://doi.org/10.5281/zenodo.18624123
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/

	Tao's Equational Proof Challenge Accepted
	1 Introduction
	2 Background
	2.1 Vampire and Superposition Proofs
	2.2 Twee and Structured Equational Chain Proofs

	3 Proof Redirection
	4 Proof Generation for Intermediate Lemmas
	5 Proof Construction for the Main Theorem
	5.1 Construction of the Dependency Graph
	5.2 Construction of the First Proof Segment
	5.3 Construction of the Remaining Proof Segments
	5.4 Proof Output

	6 Application to Tao's Challenge
	7 Experiments on Other Equational Proofs
	8 Related Work
	9 Conclusion

